Frontiers of Optoelectronics

, Volume 10, Issue 2, pp 111–116 | Cite as

Basic properties of a new Nd-doped laser crystal: Nd:GdNbO4

  • Shoujun Ding
  • Qingli Zhang
  • Wenpeng Liu
  • Jianqiao Luo
  • Dunlu Sun
Research Article


A Nd-doped GdNbO4 single crystals have been grown successfully using the Czochralski technique. The chemical etching method was employed to study the defects in the structural morphology of Nd:GdNbO4 crystal with phosphoric acid etchant. Mechanical properties (such as hardness, yield strength, fracture toughness, and brittle index) of the as-grown crystal were systematically estimated on the basis of the Vickers hardness test for the first time. The transmission spectrum of Nd: GdNbO4 was measured in the wavelength range of 320–2400 nm at room temperature, and the absorption peaks were assigned. Results hold great significance for further research on Nd:GdNbO4.


Nd:GdNbO4 laser crystal mechanical properties chemical etching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61205173, 51272254, 51502292, and 61405206) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No. CXJJ-15M055).


  1. 1.
    Sanghera J, Kim W, Villalobos G, Shaw B, Baker C, Frantz J, Sadowski B, Aggarwal I. Ceramic laser materials. Materials (Basel), 2012, 5(12): 258–277CrossRefGoogle Scholar
  2. 2.
    Zhang H J, Meng X L, Zhu L, Wang C Q, Wang P, Zhang H Z, Chow Y T, Dawes J. Growth and laser properties of laser crystal Nd: Gd0.8La0.2VO4. Journal of Crystal Growth, 1998, 193(3): 370–373CrossRefGoogle Scholar
  3. 3.
    Lee M C, Chang C S, Huang Y L, Chang S L, Chang C H, Lin Y F, Hu S. Treatment of melasma with mixed parameters of 1064-nm Qswitched Nd:YAG laser toning and an enhanced effect of ultrasonic application of vitamin C: a split-face study. Lasers in Medical Science, 2015, 30(1): 159–163CrossRefGoogle Scholar
  4. 4.
    Kane T J, Kozlovsky W J, Byer R L, Byvik C E. Coherent laser radar at 1.06 µm using Nd:YAG lasers. Optics Letters, 1987, 12(4): 239–241CrossRefGoogle Scholar
  5. 5.
    Rodin A M, Grishin M, Michailovas A. Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal. Optics & Laser Technology, 2016, 76: 46–52CrossRefGoogle Scholar
  6. 6.
    Yu H H, Liu J H, Zhang H J, Kaminskii A A, Wang Z P, Wang J Y. Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer. Laser & Photonics Reviews, 2014, 8(6): 847–864CrossRefGoogle Scholar
  7. 7.
    Nazarov M, Kim Y J, Lee E Y, Min K, Jeong M S, Lee SW, Noh D Y. Luminescence and Raman studies of YNbO4 phosphors doped by Eu3+, Ga3+, and Al3+. Journal of Applied Physics, 2010, 107(10): 103104CrossRefGoogle Scholar
  8. 8.
    Wang Y Z, Zhang L L, Cao R P, Miao Q, Qiu J Q. Structure and properties of CaNb2O6:Sm3+ thin films by pulsed laser deposition. Applied Physics A, 2014, 115(4): 1365–1370CrossRefGoogle Scholar
  9. 9.
    Ding S J, Peng F, Zhang Q L, Luo J Q, Liu WP, Sun D L, Dou R Q, Sun G H. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm. Optical Materials, 2016, 62: 7–11CrossRefGoogle Scholar
  10. 10.
    Fang X, Roushan M, Zhang R, Peng J, Zeng H, Li J. Tuning and enhancing white light emission of II–VI based inorganic–organic hybrid semiconductors as single-phased phosphors. Chemistry of Materials, 2012, 24(10): 1710–1717CrossRefGoogle Scholar
  11. 11.
    Jüstel T, Nikol H, Ronda C. New developments in the field of luminescent materials for lighting and displays. Angewandte Chemie International Edition, 1998, 37(22): 3084–3103CrossRefGoogle Scholar
  12. 12.
    Huang C, Liu W, Chen T. Single-phased white-light phosphors Ca9Gd(PO4)7:Eu2+, Mn2+ under near-ultraviolet excitation. Journal of Physical Chemistry C, 2010, 114(43): 18698–18701CrossRefGoogle Scholar
  13. 13.
    Dou R Q, Zhang Q L, Luo J Q, Chen J K, Yang H J, Liu WP, Sun G H, Sun D L. Growth, structure, and spectroscopic properties of 5 at.% Yb:GdNbO4 laser crystal. Optical Materials, 2015, 42: 56–61CrossRefGoogle Scholar
  14. 14.
    Ding S J, Peng F, Zhang Q L, Luo J Q, Liu WP, Sun D L, Dou R Q, Gao J Y, Sun G H, Cheng M J. Crystal growth, spectral properties, and continuous wave laser operation of Nd:GdNbO4. Journal of Alloys and Compounds, 2017, 693: 339–343CrossRefGoogle Scholar
  15. 15.
    Zhong D G, Teng B, Cao L F, Fei Y, Zhang S M, Li Y Y, Wang C, He L X, Huang W X. Characterization of dislocations and sub-grain boundaries in mixed rare earth orthovanadate of Yb:YxLu1–xVO4. Optical Materials, 2014, 36(12): 2034–2038CrossRefGoogle Scholar
  16. 16.
    Dou R Q, Zhang Q L, Liu WP, Luo J Q, Wang X F, Ding S J, Sun D L. Growth, structure, chemical etching, and spectroscopic properties of a 2.9 mm Tm,Ho:GdYTaO4 laser crystal. Optical Materials, 2015, 48: 80–85CrossRefGoogle Scholar
  17. 17.
    Ding S J, Liu WP, Zhang Q L, Peng F, Luo J Q, Dou R Q, Sun G H, Sun D L. Crystal growth, defects, and mechanical and spectral properties of a novel mixed laser crystal Nd:GdYNbO4. Applied Physics A, 2017, 123: 70CrossRefGoogle Scholar
  18. 18.
    Thirumurugan R, Babu B, Anitha K, Chandrasekaran J. Structural, optical, thermal, mechanical, dielectric and laser damage threshold studies of a succinate salt of creatinine for nonlinear optical applications. Materials Letters, 2016, 185: 214–217CrossRefGoogle Scholar
  19. 19.
    Mythili P, Kanagasekaran T, Sharma S N, Gopalakrishnan R. Growth and characterization of sodium sulfanilate dihydrate (SSDH) crystals for NLO applications. Journal of Crystal Growth, 2007, 306(2): 344–350CrossRefGoogle Scholar
  20. 20.
    Hanumantha Rao R, Kalainathan S. Microhardness, chemical etching, SEM, AFM and SHG studies of novel nonlinear optical crystal–l-threonine formate. Materials Research Bulletin, 2012, 47(4): 987–992CrossRefGoogle Scholar
  21. 21.
    Singh P, Hasmuddin M, Shakir M, Vijayan N, Abdullah M M, Ganesh V,Wahab MA. Investigation on structural, optical, thermal, mechanical and dielectric properties of l-proline cadmium chloride monohydrate single crystals: an efficient NLO material. Materials Chemistry and Physics, 2013, 142(1): 154–164CrossRefGoogle Scholar
  22. 22.
    Gupta V, Bamzai K K, Kotru P N, Wanklyn B M. Mechanical characteristics of flux-grown calcium titanate and nickel titanate crystals. Materials Chemistry and Physics, 2005, 89(1): 64–71CrossRefGoogle Scholar
  23. 23.
    Jain A, Razdan A K, Kotru P N, Wanklyn BM. Load and directional effects on microhardness and estimation of toughness and brittleness for flux-grown LaBO3 crystals. Journal of Materials Science, 1994, 29(14): 3847–3856CrossRefGoogle Scholar
  24. 24.
    Cahoon J P, Broughton W H, Kutzuk A R. The determination of yield strength from hardness measurements. Metallurgical and Materials Transactions B, Process Metallurgy and Materials Processing Science, 1971, 2(7): 1979–1983Google Scholar
  25. 25.
    Townsend D, Field J E. Fracture toughness and hardness of zinc sulphide as a function of grain size. Journal of Materials Science, 1990, 25(2): 1347–1352CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shoujun Ding
    • 1
    • 2
  • Qingli Zhang
    • 1
  • Wenpeng Liu
    • 1
  • Jianqiao Luo
    • 1
  • Dunlu Sun
    • 1
  1. 1.Anhui Institute of Optics and Fine MechanicsChinese Academy of SciencesHefeiChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations