Frontiers of Optoelectronics

, Volume 10, Issue 2, pp 117–123 | Cite as

Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials

  • Feng Gao
  • Yuchun Liu
  • Yan Xiong
  • Ping Wu
  • Bin Hu
  • Ling Xu
Research Article

Abstract

In this paper, we fabricated an organic thermoelectric (TE) device with modified [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3-dihydro-1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 mV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured ~0.82 V, and generated power reached almost 945 mW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.

Keywords

organic thermoelectric generator thermocouple poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) [6.6]-phenyl-C61butyric acid methyl ester (PCBM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We acknowledge the financial support provided by the National Young Natural Science Foundation of China (Grant No. 61306067) and the Fundamental Research Funds for the Central Universities in Huazhong University of Science and Technology (Nos. 2014NY009 and 2016YXMS033).

References

  1. 1.
    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602CrossRefGoogle Scholar
  2. 2.
    Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering, 2014, 66(1–2): 15–24CrossRefGoogle Scholar
  3. 3.
    Zhao L D, Tan G J, Hao S Q, He J Q, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid V P, Uher C, Snyder G J, Wolverton C, Kanatzidis M G. Ultrahigh power factor and thermoelectric performance in hole doped single-crystal SnSe. Science, 2016, 351(6269): 141–144CrossRefGoogle Scholar
  4. 4.
    Yan L, Shao M, Wang H, Dudis D, Urbas A, Hu B. High Seebeck effects from hybrid metal/polymer/metal thin-film devices. Advanced Materials, 2011, 23(35): 4120–4124CrossRefGoogle Scholar
  5. 5.
    Taggart D K, Yang Y, Kung S C, McIntire T M, Penner R M. Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires. Nano Letters, 2011, 11(1): 125–131CrossRefGoogle Scholar
  6. 6.
    Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M, Crispin X. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nature Materials, 2011, 10(6): 429–433CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Sun Y M, Xu W, Zhu D B. Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions. Energy & Environmental Science, 2012, 5(11): 9639–9644CrossRefGoogle Scholar
  8. 8.
    Ma H K, Lin C P, Wu H P, Peng C H, Hsu C C. Waste heat recovery using a thermoelectric power generation system in a biomass gasifier. Applied Thermal Engineering, 2015, 88: 274–279CrossRefGoogle Scholar
  9. 9.
    Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators. Energy & Environmental Science, 2012, 5(11): 9345–9362CrossRefGoogle Scholar
  10. 10.
    Bubnova O, Berggren M, Crispin X. Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. Journal of the American Chemical Society, 2012, 134(40): 16456–16459CrossRefGoogle Scholar
  11. 11.
    Poehler T O, Katz H E. Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis. Energy & Environmental Science, 2012, 5(8): 8110–8115CrossRefGoogle Scholar
  12. 12.
    Jiao F, Di C A, Sun Y, Sheng P, Xu W, Zhu D B. Inkjet-printed flexible organic thin-film thermoelectric devices based on p- and ntype poly(metal 1,1,2,2-ethenetetrathiolate)s/polymer composites through ball-milling. Philosophical Transactions of the Royal Society A, 2014, 372(2013): 20130008CrossRefGoogle Scholar
  13. 13.
    Yu C, Murali A, Choi K, Ryu Y. Air-stable fabric thermoelectric modules made of N- and P-type carbon Nanotubes. Energy & Environmental Science, 2012, 5(11): 9481–9486CrossRefGoogle Scholar
  14. 14.
    Shen S, Henry A, Tong J, Zheng R, Chen G. Polyethylene nanofibres with very high thermal conductivities. Nature Nanotechnology, 2010, 5(4): 251–255CrossRefGoogle Scholar
  15. 15.
    Rojo MM, Martín J, Grauby S, Borca-Tasciuc T, Dilhaire S, Martin-Gonzalez M. Correction: Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials. Nanoscale, 2015, 7(9): 4256–4257CrossRefGoogle Scholar
  16. 16.
    Hansen D, Bernier G A. Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity. Polymer Engineering and Science, 1972, 12(3): 204–208CrossRefGoogle Scholar
  17. 17.
    See K C, Feser J P, Chen C E, Majumdar A, Urban J J, Segalman R A. Water-processable polymer-nanocrystal hybrids for thermoelectrics. Nano Letters, 2010, 10(11): 4664–4667CrossRefGoogle Scholar
  18. 18.
    Yu C, Choi K, Yin L, Grunlan J C. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano, 2011, 5(10): 7885–7892CrossRefGoogle Scholar
  19. 19.
    Bubnova O, Khan Z U, Wang H, Braun S, Evans D R, Fabretto M, Hojati-Talemi P, Dagnelund D, Arlin J B, Geerts Y H, Desbief S, Breiby D W, Andreasen J W, Lazzaroni R, Chen W M, Zozoulenko I, Fahlman M, Murphy P J, Berggren M, Crispin X. Semi-metallic polymers. Nature Materials, 2014, 13(2): 190–194CrossRefGoogle Scholar
  20. 20.
    Culebras M, Gómez C M, Cantarero A. Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2014, 2(26): 10109–10115CrossRefGoogle Scholar
  21. 21.
    Lee G W, Park M, Kim J, Lee J I, Yoon H G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Composites Part A, Applied Science and Manufacturing, 2006, 37(5): 727–734CrossRefGoogle Scholar
  22. 22.
    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286CrossRefGoogle Scholar
  23. 23.
    Kilbride B E, Coleman J N, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ. Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics, 2002, 92(7): 4024–4030CrossRefGoogle Scholar
  24. 24.
    Cho C, Stevens B, Hsu J H, Bureau R, Hagen D A, Regev O, Yu C, Grunlan J C. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Advanced Materials, 2015, 27(19): 2996–3001CrossRefGoogle Scholar
  25. 25.
    Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T. Recent progress on PEDOT-based thermoelectric materials. Materials (Basel), 2015, 8(2): 732–750CrossRefGoogle Scholar
  26. 26.
    Bae E J, Kang Y H, Jang K S, Cho S Y. Enhancement of thermoelectric properties of PEDOT: PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment. Scientific Reports, 2016, 6(1): 18805–18815CrossRefGoogle Scholar
  27. 27.
    Schlitz R A, Brunetti F G, Glaudell A M, Miller P L, Brady M A, Takacs C J, Hawker C J, Chabinyc M L. Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Advanced Materials, 2014, 26(18): 2825–2830CrossRefGoogle Scholar
  28. 28.
    Russ B, Robb M J, Brunetti F G, Miller P L, Perry E E, Patel S N, Ho V, Chang WB, Urban J J, Chabinyc ML, Hawker C J, Segalman R A. Power factor enhancement in solution-processed organic ntype thermoelectrics through molecular design. Advanced Materials, 2014, 26(21): 3473–3477CrossRefGoogle Scholar
  29. 29.
    Dang M T, Hirsch L,Wantz G. P3HT:PCBM, best seller in polymer photovoltaic research. Advanced Materials, 2011, 23(31): 3597–3602CrossRefGoogle Scholar
  30. 30.
    Chen D, Nakahara A, Wei D, Nordlund D, Russell T P. P3HT/PCBM bulk heterojunction organic photovoltaics: correlating efficiency and morphology. Nano Letters, 2011, 11(2): 561–567CrossRefGoogle Scholar
  31. 31.
    Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy & Environmental Science, 2014, 7(8): 2642–2646CrossRefGoogle Scholar
  32. 32.
    Ye L, Zhang S Q, Qian D P, Wang Q, Hou J H. Application of bis- PCBM in polymer solar cells with improved voltage. Journal of Physics Chemistry C, 2013, 117: 25360–25366CrossRefGoogle Scholar
  33. 33.
    Ye L, Fan B H, Zhang S Q, Li S S, Yang B, Qin Y P, Hao Z, Hou J H. Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China Materials, 2015, 58: 953–960CrossRefGoogle Scholar
  34. 34.
    Menke T, Ray D, Meiss J, Leo K, Riede M. In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60. Applied Physics Letters, 2012, 100(9): 093304CrossRefGoogle Scholar
  35. 35.
    Schafferhans J, Baumann A, Wagenpfahl A, Deibel C, Dyakonov V. Oxygen doping of P3HT: PCBM blends: influence on trap states, charge carrier mobility and solar cell performance. Organic Electronics, 2010, 11(10): 1693–1700CrossRefGoogle Scholar
  36. 36.
    Lee H W, Yoon Y, Park S, Oh J H, Hong S, Liyanage L S, Wang H, Morishita S, Patil N, Park Y J, Park J J, Spakowitz A, Galli G, Gygi F, Wong P H, Tok J B, Kim JM, Bao Z. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nature Communications, 2011, 2: 541CrossRefGoogle Scholar
  37. 37.
    Gomulya W, Costanzo G D, de Carvalho E J F, Bisri S Z, Derenskyi V, Fritsch M, Fröhlich N, Allard S, Gordiichuk P, Herrmann A, Marrink S J, dos Santos M C, Scherf U, Loi M A. Semiconducting single-walled carbon nanotubes on demand by polymer wrapping. Advanced Materials, 2013, 25(21): 2948–2956CrossRefGoogle Scholar
  38. 38.
    Menke T, Wei P, Ray D, Kleemann H, Naab B D, Bao Z, Leo K, Riede M. A comparison of two air-stable molecular n-dopants for C60. Organic Electronics, 2012, 13(12): 3319–3325CrossRefGoogle Scholar
  39. 39.
    Li F, Pfeiffer M, Werner A, Harada K, Leo K, Hayashi N, Seki K, Liu X, Dang X D. Acridine orange base as a dopant for n doping of C60 thin films. Journal of Applied Physics, 2006, 100(2): 023716CrossRefGoogle Scholar
  40. 40.
    Allard S, Forster M, Souharce B, Thiem H, Scherf U. Organic semiconductors for solution-processable field-effect transistors (OFETs). Angewandte Chemie, 2008, 47(22): 4070–4098CrossRefGoogle Scholar
  41. 41.
    Di C A, Zhang F, Zhu D. Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Advanced Materials, 2013, 25(3): 313–330CrossRefGoogle Scholar
  42. 42.
    Rovira C. Bis(ethylenethio)tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: from the molecule to functional molecular materials and devices (OFETs). Chemical Reviews, 2004, 104(11): 5289–5318CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Feng Gao
    • 1
  • Yuchun Liu
    • 1
  • Yan Xiong
    • 1
  • Ping Wu
    • 1
  • Bin Hu
    • 1
  • Ling Xu
    • 1
  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations