Frontiers of Optoelectronics

, Volume 10, Issue 2, pp 138–143 | Cite as

Coupled two aluminum nanorod antennas for near-field enhancement

  • Yan Deng
  • Jian Ou
  • Jiangying Yu
  • Min Zhang
  • Li Zhang
Research Article


Aluminum (Al) plasmonic nanoantennas possess many tunabilities in the ultraviolet (UV) region and have a variety of new applications, such as in sensitive UV photodetection and UV photolithography. Using discrete dipole approximation (DDA), the resonant optical properties and enhanced local field distribution of coupled Al nanorod antennas were investigated. The effects of gap distance on the extinction spectra were analyzed to obtain the surface plasmon modes of these nanostructures across the visible and in the UV spectral range, which can be attributed to the coupling of the surface plasmon modes from each Al nanorod. In addition, the enhanced local field factors plotted as a function of gap distance were simulated under transverse and longitudinal polarizations to achieve maximum near-field enhancement for the optical antennas. When the gap distance was decreased to 5 nm, the maximum value of the enhanced factor was 18.04 at the transverse mode peak of 424 nm. This could be explained by the combination of the interaction between the charges distributed at the opposite ends of two Al nanorods and the interaction between the charges distributed at the lateral sides of each Al nanorod. Results showed that the coupled Al nanorod antennas with enhanced local field show promise for UV plasmonics.


aluminum (Al) nanorod optical antennas surface plasmon resonance (SPR) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (No. 2013CBA01703), the National Natural Science Foundation of China (Grant No. 21271007), the Foundation for Young Talents in College of Anhui Province (No. 2013SQRL044ZD), the Colleges and Universities Natural Science Foundation of Anhui Province (No. KJ2016JD18).


  1. 1.
    Zohrabi M, Mohebbifar M R. Electric field enhancement around gold tip optical antenna. Plasmonics, 2015, 10(4): 887–892CrossRefGoogle Scholar
  2. 2.
    Chen P, Liu J, Wang L, Jin K, Yin Y, Li Z. Optimization and maximum potential of optical antennae in near-field enhancement. Applied Optics, 2015, 54(18): 5822–5828CrossRefGoogle Scholar
  3. 3.
    Taminiau T H, Moerland R J, Segerink F B, Kuipers L, van Hulst N F. l/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Letters, 2007, 7(1): 28–33CrossRefGoogle Scholar
  4. 4.
    Greffet J J. Nanoantennas for light emission. Science, 2005, 308(5728): 1561–1563CrossRefGoogle Scholar
  5. 5.
    Li S Q, Zhou W, Buchholz D B, Ketterson J B, Ocola L E, Sakoda K, Chang R P H. Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays. Applied Physics Letters, 2014, 104(23): 231101CrossRefGoogle Scholar
  6. 6.
    Klaer P, Razinskas G, Lehr M, Krewer K, Schertz F, Wu X, Hecht B, Schönhense G, Elmers H J. Robustness of plasmonic angular momentum confinement in cross resonant optical antennas. Applied Physics Letters, 2015, 106(26): 261101CrossRefGoogle Scholar
  7. 7.
    Blanchard R, Aoust G, Genevet P, Yu N, Kats M A, Gaburro Z, Capasso F. Modeling nanoscale V-shaped antennas for the design of optical phased arrays. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(15): 155457CrossRefGoogle Scholar
  8. 8.
    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W E. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photonics, 2009, 3(11): 654–657CrossRefGoogle Scholar
  9. 9.
    Atie E M, Xie Z, Eter A E, Salut R, Nedeljkovic D, Tannous T, Baida F I, Grosjean T. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy. Applied Physics Letters, 2015, 106(15): 151104CrossRefGoogle Scholar
  10. 10.
    Zhu W, Rukhlenko I D, Xiao F, Premaratne M. Polarization conversion in U- shaped chiral meta-material with four-fold symmetry breaking. Journal of Applied Physics, 2014, 115(14): 143101CrossRefGoogle Scholar
  11. 11.
    Zhang Z Y, Zhao Y P. Extinction spectra and electrical field enhancement of Ag nanorods with different topologic shapes. Journal of Applied Physics, 2007, 102(11): 113308CrossRefGoogle Scholar
  12. 12.
    Seok T J, Jamshidi A, Kim M, Dhuey S, Lakhani A, Choo H, Schuck P J, Cabrini S, Schwartzberg A M, Bokor J, Yablonovitch E, Wu M C. Radiation engineering of optical antennas for maximum field enhancement. Nano Letters, 2011, 11(7): 2606–2610CrossRefGoogle Scholar
  13. 13.
    Rose A, Hoang T B, McGuire F, Mock J J, Ciracì C, Smith D R, Mikkelsen M H. Control of radiative processes using tunable plasmonic nanopatch antennas. Nano Letters, 2014, 14(8): 4797–4802CrossRefGoogle Scholar
  14. 14.
    Knight MW, King N S, Liu L, Everitt H O, Nordlander P, Halas N J. Aluminum for plasmonics. ACS Nano, 2014, 8(1): 834–840CrossRefGoogle Scholar
  15. 15.
    Sanz J M, Ortiz D, Alcaraz De La Osa R, Saiz J M, González F, Brown A S, Losurdo M, Everitt H O, Moreno F. UV plasmonic behavior of various metal nanoparticles in the near and far-field regimes. Journal of Physical Chemistry C, 2013, 117(38): 19606–19615CrossRefGoogle Scholar
  16. 16.
    Ono A, Kikawada M, Akimoto R, Inami W, Kawata Y. Fluorescence enhancement with deep-ultraviolet surface plasmon excitation. Optics Express, 2013, 21(15): 17447–17453CrossRefGoogle Scholar
  17. 17.
    Ekinci Y, Solak H H, Löffler J F. Plasmon resonances of aluminum nanoparticles and nanorods. Journal of Applied Physics, 2008, 104(8): 083107CrossRefGoogle Scholar
  18. 18.
    Wang J, Walters F, Liu X, Sciortino P, Deng X. High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Applied Physics Letters, 2007, 90(6): 061104CrossRefGoogle Scholar
  19. 19.
    Burgos S P, de Waele R, Polman A, Atwater H A. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nature Materials, 2010, 9(5): 407–412CrossRefGoogle Scholar
  20. 20.
    Zhu J, Li J, Zhao J. Tuning the plasmon band number of aluminum nanorod within the ultraviolet-visible region by gold coating. Physics of Plasmas, 2014, 21(11): 112108CrossRefGoogle Scholar
  21. 21.
    McMahon JM, Schatza G C, Gray S K. Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Physical Chemistry Chemical Physics, 2013, 17(29): 5415–5423CrossRefGoogle Scholar
  22. 22.
    Lassiter J B, Aizpurua J, Hernandez L I, Brandl DW, Romero I, Lal S, Hafner J H, Nordlander P, Halas N J. Close encounters between two nanoshells. Nano Letters, 2008, 8(4): 1212–1218CrossRefGoogle Scholar
  23. 23.
    Jain P K, El-Sayed M A. Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Letters, 2008, 8(12): 4347–4352CrossRefGoogle Scholar
  24. 24.
    Prodan E, Radloff C, Halas N J, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science, 2003, 302(5644): 419–422CrossRefGoogle Scholar
  25. 25.
    Hermoso W, Alves T V, Ornellas F R, Camargo P H C. Comparative study on the far-field spectra and near-field amplitudes for silver and gold nanocubes irradiated at 514, 633 and 785 nm as a function of the edge length. European Physical Journal D, 2012, 66(5): 135CrossRefGoogle Scholar
  26. 26.
    Shi H, Wang C, Zhou Y, Jin K, Yang G. Silver nanoparticles grown in organic solvent PGMEA by pulsed laser ablation and their nonlinear optical properties. Journal of Nanoscience and Nanotechnology, 2012, 12(10): 7896–7902CrossRefGoogle Scholar
  27. 27.
    Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. Journal of Physical Chemistry C, 2007, 111(10): 3806–3819CrossRefGoogle Scholar
  28. 28.
    González A L, Noguez C, Ortiz G P, Rodríguez-Gattorno G. Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles. Journal of Physical Chemistry B, 2005, 109(37): 17512–17517CrossRefGoogle Scholar
  29. 29.
    Deng Y, Liu G, Zhang L, Ming H. Far- and near-field optical properties of Al nanorod by discrete dipole approximation. Journal of Modern Optics, 2015, 62(15): 1199–1203CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yan Deng
    • 1
  • Jian Ou
    • 1
  • Jiangying Yu
    • 1
  • Min Zhang
    • 1
  • Li Zhang
    • 1
  1. 1.Department of Mathematics and PhysicsAnhui Jianzhu UniversityHefeiChina

Personalised recommendations