Advertisement

Frontiers of Optoelectronics

, Volume 10, Issue 2, pp 174–179 | Cite as

Dynamic spot tracking system based on 2D galvanometer in free space optical communication for short distance

  • Qingshan Jiang
  • Ciling Zeng
  • Fengqiang Gu
  • Ming Zhao
Research Article

Abstract

Dynamic tracking of laser spot is a key process in the establishment of free space optical communication. In this paper, a dynamic tracking system was presented. In this system, a two-dimensional (2D) galvanometer was used to change the angle of the optical axis of the incident beam at a certain scanning frequency as optical signal jitter simulator, and another galvanometer was used to track the jitter with quadrant detector (QD) and data processing module to acquire the position information of laser spot. Results indicated that the tracking accuracy of this system mainly composed of 2D galvanometer was as high as 27.8 μrad, and its linear deviation was less than 0.013. The system could still keep the dynamic tracking of the spot stable when the jitter frequency of the optical signal was less than 1000 Hz. Those results suggested that this system could be suitable for the short distance in free space communication due to its simple structure, easy to control and low cost compared with conventional system.

Keywords

free space optical communication dynamic tracking optical signal jitter two-dimensional (2D) galvanometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work wassupported by the National Natural Science Foundation of China (Grant Nos. 61475058 and 11104094), Wuhan Science And Technology Project (No. 2015010101010001), Shenzhen Basic Research Project (No. JCYJ20140419131733980), and the Open Fund of The State Key Laboratory of High Performance Complex Manufacturing (No. Kfkt2013-07).

References

  1. 1.
    Zhao X, Tong S, Liu Y, Song Y, Jiang H. Technology on spot detection and tracking based on four-quadrant detector. Chinese Journal of Lasers, 2010, 37(7): 1756–1761CrossRefGoogle Scholar
  2. 2.
    Zhang Z. Spot position detection technology based on QD. Changchun: Changchun University of Science and Technology,2014, 21–22Google Scholar
  3. 3.
    Yue B, Yang W, Fu C. Experiments on precision tracking system with a fast steering mirror in space laser communication. Opto- Electronic Engineering, 2002, 29(3): 35–37Google Scholar
  4. 4.
    Li M, Ai Y, Cao Y. Research of fine tracking servo system for FSO terminal. Laser Technology, 2009, 33(3): 262–265Google Scholar
  5. 5.
    Shao B, Sun L, Qu D, Wang J, Qin C. Research on the key technology of ATP system for free space optical communication. Piezoelectrics & Acoustooptics, 2005, 27(4): 431–433Google Scholar
  6. 6.
    Dong R, Ai Y, Xiao Y, Shan X. Design and communication experiment of fine tracking system for free space optic. Hongwai Yu Jiguang Gongcheng, 2012, 41(10): 2718–2722Google Scholar
  7. 7.
    Zhou H, Ai Y, Shan X, Dai Y. Identification of fine tracking system for free space optical communications. Hongwai Yu Jiguang Gongcheng, 2015, 44(2): 736–740Google Scholar
  8. 8.
    Xu L. The design of scanning control system based on 2D laser galvanometer. Changchun: Changchun University of Science and Technology,2012, 13–15Google Scholar
  9. 9.
    Lu J. Research of on the determination of the spot position of the four quadrant detector. Technology Trend, 2009, 10(1): 222–224 (in Chinese)Google Scholar
  10. 10.
    Wei L. The reaserch and realization of APT system for laser space communication system. Wuhan: Huazhong University of Science and Technology,2010, 39–44Google Scholar
  11. 11.
    Han C, Bai B, Yang H, Tong S, Jiang H, Fan J. Study four-quadrant detector in the free space laser communication. Chinese Journal of Lasers, 2009, 36(8): 2030–2034CrossRefGoogle Scholar
  12. 12.
    Wang L. Technology research on fine tracking in space laser communication system. Optical Communication Technology, 2014, 3: doi:10.13921/j.cnki.issn1002-5561.2014.03.017Google Scholar
  13. 13.
    Ke Y. Measurement system design and experimental research with high accuracy for laser beam quality. Wuhan: Huazhong University of Science and Technology,2015, 16–18Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Qingshan Jiang
    • 1
  • Ciling Zeng
    • 2
  • Fengqiang Gu
    • 3
  • Ming Zhao
    • 1
  1. 1.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  2. 2.State Grid Hunan Electric Power CompanyChangshaChina
  3. 3.Beijing Kedong Power Control System Co LtdBeijingChina

Personalised recommendations