Skip to main content
Log in

Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Optical interconnects (OIs) are the only solution to fulfil both the requirements on large bandwidth and minimum power consumption of data centers and high-performance computers (HPCs). Vertical-cavity surface-emitting lasers (VCSELs) are the ideal light sources for OIs and have been widely deployed. This paper will summarize the progress made on modulation speed, energy efficiency, and temperature stability of VCSELs. Especially VCSELs with surface nanostructures will be reviewed in depth. Such lasers will provide new opportunities to further boost the performance of VCSELs and open a new door for energy-efficient OIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2014–2019 White Paper, http://www.cisco.com/c/en/us/solutions/ collateral/service-provider/global-cloud-index-gci/Cloud_Index_ White_Paper.html

  2. TOP500 supercomputer list of November 2015, http://www.top500. org/statistics/perfdevel/

  3. Savage N. Linking with light. IEEE Spectrum, 2002, 39(8): 32–36

    Article  Google Scholar 

  4. Benner A F, Ignatowski M, Kash J A, Kuchta D M, Ritter M B. Exploitation of optical interconnects in future server architectures. IBM Journal of Research and Development, 2005, 49(4/5): 755–775

    Article  Google Scholar 

  5. Coteus P W, Knickerbocker J U, Lam C H, Vlasov Y A. Technologies for exascale systems. IBM Journal of Research and Development, 2011, 55(5): 14-1–14-12

    Article  Google Scholar 

  6. Lam C F, Liu H, Koley B, Zhao X, Kamalov V, Gill V. Fiber optic communication technologies: what’s needed for datacenter network operations. IEEE Communications Magazine, 2010, 48(7): 32–39

    Article  Google Scholar 

  7. Borkar S. Role of interconnects in the future of computing. Journal of Lightwave Technology, 2013, 31(24): 3927–3933

    Article  Google Scholar 

  8. Taubenblatt M A. Optical interconnects for high-performance computing. Journal of Lightwave Technology, 2012, 30(4): 448–457

    Article  Google Scholar 

  9. Miller D A B. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185

    Article  Google Scholar 

  10. Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728–749

    Article  Google Scholar 

  11. Bimberg D. Ultrafast VCSELs for Datacom. IEEE Photonics Journal, 2010, 2(2): 273–275

    Article  Google Scholar 

  12. Larsson A. Advances in VCSELs for communication and sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1552–1567

    Article  MathSciNet  Google Scholar 

  13. Tatum J A, Gazula D, Graham L A, Guenter J K, Johnson R H, King J, Kocot C, Landry G D, Lyubomirsky I, Mac Innes A N, Shaw EM, Balemarthy K, Shubochkin R, Vaidya D, Yan M, Tang F. VCSELbased interconnects for current and future data centers. Journal of Lightwave Technology, 2015, 33(4): 727–732

    Article  Google Scholar 

  14. Grabherr M, Intemann S, King R, Wabra S, Jäger R, Riedl M. VCSEL arrays for high aggregate bandwidth of up to 1.34 Tbps. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9001: 900105-1–900105-10

    Google Scholar 

  15. Michalzik R. VCSELs-Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers. Berlin: Springer, 2013, 166

    Google Scholar 

  16. Blokhin S A, Lott J A, Mutig A, Fiol G, Ledentsov N N, Maximov M V, Nadtochiy A M, Shchukin V A, Bimberg D. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s. Electronics Letters, 2009, 45(10): 501–503

    Article  Google Scholar 

  17. Kuchta D, Rylyakov A, Doany F E, Schow C, Proesel J, Baks C, Westbergh P, Gustavsson J, Larsson A A. 71 Gb/s NRZ modulated 850 nm VCSEL-based optical link. IEEE Photonics Technology Letters, 2015, 27(6): 577–580

    Article  Google Scholar 

  18. Shi J W, Wei Z R, Chi K L, Jiang J W, Wun J M, Lu I C, Chen J, Yang Y J. Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects. Journal of Lightwave Technology, 2013, 31(24): 4037–4044

    Article  Google Scholar 

  19. Hanson D. Case for using 980 nm (rather than 850 nm) VCSELs for serial 10 Gb/s links with new higher-bandwidth 50 MMF.1999 [Online]. http://www.ieee802.org/3/10G_study/public/july99/hanson_ 1_0799.pdf

  20. Chang Y C, Coldren L A. Efficient, high-data-rate, tapered oxideaperture vertical-cavity surface-emitting lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 704–715

    Article  Google Scholar 

  21. Mutig A, Lott J A, Blokhin S A, Wolf P, Moser P, Hofmann W, Nadtochiy A M, Payusov A, Bimberg D. Highly temperature-stable modulation characteristics of multioxide-aperture high-speed 980 nm vertical cavity surface emitting lasers. Applied Physics Letters, 2010, 97(15): 151101

    Article  Google Scholar 

  22. Wolf P, Moser P, Larisch G, Hofmann W, Bimberg D. High-speed and temperature-stable, oxide-confined 980 nm VCSELs for optical interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701207

    Article  Google Scholar 

  23. Héroux J B, Kise T, Funabashi M, Aoki T, Schow C L, Rylyakov A V, Nakagawa S. Energy-efficient 1060-nm optical link operating up to 28 Gb/s. Journal of Lightwave Technology, 2015, 33(4): 733–740

    Article  Google Scholar 

  24. Hatakeyama H, Anan T, Akagawa T, Fukatsu K, Suzuki N, Tokutome K, Tsuji M. Highly reliable high-speed 1.1-mm-range VCSELs with InGaAs/GaAsP-MQWs. IEEE Journal of Quantum Electronics, 2010, 46(6): 890–897

    Article  Google Scholar 

  25. Müller M, Wolf P, Gründl T, Grasse C, Rosskopf J, Hofmann W, Bimberg D, Amann M C. Energy-efficient 1.3 m short-cavity VCSELs for 30 Gb/s error-free optical links. In: Proceedings of 23rd Semiconductor Laser Conference (ISLC), 2012, 1–2

    Google Scholar 

  26. Müller M, Hofmann W, Gründl T, Horn M, Wolf P, Nagel R D, Rönneberg E, Böhm G, Bimberg D, Amann M C. 1550-nm highspeed short-cavity VCSELs. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(5): 1158–1166

    Article  Google Scholar 

  27. Moser P, Hofmann W, Wolf P, Lott J A, Larisch G, Payusov A S, Ledentsov N N, Bimberg D. 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects. Applied Physics Letters, 2011, 98(23): 231106

    Article  Google Scholar 

  28. Moser P, Lott J A, Wolf P, Larisch G, Li H, Ledentsov N N, Bimberg D. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s. Electronics Letters, 2012, 48(20): 1292–1294

    Article  Google Scholar 

  29. Haglund E, Westbergh P, Gustavsson J S, Haglund E P, Larsson A, Geen M, Joel A. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s. Electronics Letters, 2015, 51(14): 1096–1098

    Article  Google Scholar 

  30. Li H, Wolf P, Moser P, Larisch G, Mutig A, Lott J A, Bimberg D. Energy-efficient and temperature-stable oxide-confined 980 nm VCSELs operating error-free at 38 Gbit/s at 85°C. Electronics Letters, 2014, 50(2): 103–105

    Article  Google Scholar 

  31. Moser P, Lott J A, Wolf P, Larisch G, Li H, Bimberg D. Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85°C. Electronics Letters, 2014, 50(19): 1369–1371

    Article  Google Scholar 

  32. Kuchta D M, Rylyakov A V, Schow C L, Proesel J E, Baks C W, Westbergh P, Gustavsson J S, Larsson A A. 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90°C. Journal of Lightwave Technology, 2015, 33(4): 802–810

    Article  Google Scholar 

  33. Tan F, Wu C H, Feng M, Holonyak N. Energy efficient microcavity lasers with 20 and 40 Gb/s data transmission. Applied Physics Letters, 2011, 98(19): 191107

    Article  Google Scholar 

  34. Wu C H, Tan F, Feng M, Holonyak N. The effect of mode spacing on the speed of quantum-well microcavity lasers. Applied Physics Letters, 2010, 97(9): 091103

    Article  Google Scholar 

  35. Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits. New York: Wiley, 1995

    Google Scholar 

  36. Westbergh P, Gustavsson J S, Kögel B, Haglund Å, Larsson A. Impact of photon lifetime on high-speed VCSEL performance. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603–1613

    Article  Google Scholar 

  37. Mutig A, Bimberg D. Progress on high-speed 980nm VCSELs for short-reach optical interconnects. Advances in Optical Technologies, 2011, 2011: 290508

    Article  Google Scholar 

  38. Moser P, Wolf P, Mutig A, Larisch G, Unrau W, Hofmann W, Bimberg D. 85°C error-free operation at 38 Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers. Applied Physics Letters, 2012, 100(8): 081103

    Article  Google Scholar 

  39. Li H, Wolf P, Moser P, Larisch G, Mutig A, Lott A, Bimberg D H. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs. IEEE Journal of Quantum Electronics, 2014, 50(8): 613–621

    Article  Google Scholar 

  40. Zhou W, Zhao D, Shuai Y C, Yang H, Chuwongin S, Chadha A, Seo J H, Wang K X, Liu V, Ma Z, Fan S. Progress in 2D photonic crystal Fano resonance photonics. Progress in Quantum Electronics, 2014, 38(1): 1–74

    Article  Google Scholar 

  41. Mateus C F R, Huang M C Y, Deng Y, Neureuther A R, Chang- Hasnain C J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technology Letters, 2004, 16(2): 518–520

    Article  Google Scholar 

  42. Mateus C F R, Huang M C Y, Chen L, Chang-Hasnain C J, Suzuki Y. Broad-band mirror (1.12–1.62 mm) using a subwavelength grating. IEEE Photonics Technology Letters, 2004, 16(7): 1676–1678

    Article  Google Scholar 

  43. Boutami S, Ben Bakir B, Leclercq J L, Letartre X, Rojo-Romeo P, Garrigues M, Viktorovitch P, Sagnes I, Legratiet L, Strassner M. Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter. Optics Express, 2006, 14(8): 3129–3137

    Article  Google Scholar 

  44. Sciancalepore C, Bakir B B, Letartre X, Fedeli J M, Olivier N, Bordel D, Seassal C, Rojo-Romeo P, Regreny P, Viktorovitch P. Quasi-3D light confinement in double photonic crystal reflectors VCSELs for CMOS-compatible integration. Journal of Lightwave Technology, 2011, 29(13): 2015–2024

    Article  Google Scholar 

  45. Viktorovitch P, Bakir B B, Boutami S, Leclercq J L, Letartre X, Rojo-Romeo P, Seassal C, Zussy M, Cioccio L D, Fedeli J M. 3D harnessing of light with 2.5D photonic crystals. Laser & Photonics Reviews, 2010, 4(3): 401–413

    Article  Google Scholar 

  46. Magnusson R, Shokooh-Saremi M. Physical basis for wideband resonant reflectors. Optics Express, 2008, 16(5): 3456–3462

    Article  Google Scholar 

  47. Shokooh-Saremi M, Magnusson R. Wideband leaky-mode resonance reflectors: influence of grating profile and sublayers. Optics Express, 2008, 16(22): 18249–18263

    Article  Google Scholar 

  48. Karagodsky V, Sedgwick F G, Chang-Hasnain C J. Theoretical analysis of subwavelength high contrast grating reflectors. Optics Express, 2010, 18(16): 16973–16988

    Article  Google Scholar 

  49. Liu A, Fu F, Wang Y, Jiang B, Zheng W. Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulatormetal structure. Optics Express, 2012, 20(14): 14991–15000

    Article  Google Scholar 

  50. Debernardi P, Orta R, Gründl T, Amann M C. 3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers. IEEE Journal of Quantum Electronics, 2013, 49(2): 137–145

    Article  Google Scholar 

  51. Gebski M, Kuzior O, Dems M, Wasiak M, Xie Y Y, Xu Z J, Wang Q J, Zhang D H, Czyszanowski T. Transverse mode control in highcontrast grating VCSELs. Optics Express, 2014, 22(17): 20954–20963

    Article  Google Scholar 

  52. Huang M C Y, Zhou Y, Chang-Hasnain C J. A surface-emitting laser incorporating a high-indexcontrast subwavelength grating. Nature Photonics, 2007, 1(2): 119–122

    Article  Google Scholar 

  53. Huang M C Y, Zhou Y, Chang-Hasnain C J. A nanoelectromechanical tunable laser. Nature Photonics, 2008, 2(3): 180–184

    Article  Google Scholar 

  54. Boutami S, Benbakir B, Leclercq J L, Viktorovitch P. Compact and polarization controlled 1.55 mm vertical-cavity surface emitting laser using single-layer photonic crystal mirror. Applied Physics Letters, 2007, 91(7): 071105

    Article  Google Scholar 

  55. Hofmann W, Chase C, Müller M, Rao Y, Grasse C, Böhm G, Amann M C, Chang-Hasnain C J. Long-wavelength high-contrast grating vertical-cavity surface-emitting laser. IEEE Photonics Journal, 2010, 2(3): 415–422

    Article  Google Scholar 

  56. Ansbæk T, Chung I S, Semenova E S, Yvind K. 1060-nm tunable monolithic high index contrast subwavelength grating VCSEL. IEEE Photonics Technology Letters, 2013, 25(4): 365–367

    Article  Google Scholar 

  57. Inoue S, Kashino J, Matsutani A, Ohtsuki H, Miyashita T, Koyama F. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs. Japanese Journal of Applied Physics, 2014, 53(9): 090306

    Article  Google Scholar 

  58. Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar grating diffraction. Journal of the Optical Society of America, 1981, 71(7): 811–818

    Article  Google Scholar 

  59. Huang M C Y, Zhou Y, Chang-Hasnain C J. Single mode highcontrast subwavelength grating vertical cavity surface emitting lasers. Applied Physics Letters, 2008, 92(17): 171108

    Article  Google Scholar 

  60. Liu A, Hofmann W, Bimberg D. Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs. Optics Express, 2014, 22(10): 11804–11811

    Article  Google Scholar 

  61. Liu A, Hofmann W, Bimberg D. Integrated high-contrast-grating optical sensor using guided mode. IEEE Journal of Quantum Electronics, 2015, 51(1): 1–8

    Article  Google Scholar 

  62. Liu A, Hofmann W, Bimberg D. VCSELs with surface nanostructures. In: Proceedings of Asia Communications and Photonics Conference, 2014, ATh2B. 4

    Google Scholar 

  63. Zhao D, Ma Z, Zhou W. Field penetrations in photonic crystal Fano reflectors. Optics Express, 2010, 18(13): 14152–14158

    Article  Google Scholar 

  64. Babic D I, Corzine S W. Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE Journal of Quantum Electronics, 1992, 28(2): 514–524

    Article  Google Scholar 

  65. Chung I S, Mørk J. Speed enhancement in VCSELs employing grating mirrors. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8633: 863308

    Google Scholar 

  66. Rao Y, Yang W, Chase C, Huang M C Y, Worland D P, Khaleghi S, Chitgarha M R, Ziyadi M, Willner A E, Chang-Hasnain C J. Long-Wavelength VCSEL using high-contrast grating. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701311

    Google Scholar 

  67. Karagodsky V, Pesala B, Chase C, Hofmann W, Koyama F, Chang- Hasnain C J. Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. Optics Express, 2010, 18(2): 694–699

    Article  Google Scholar 

  68. Sciancalepore C, Bakir B B, Menezo S, Letartre X, Bordel D, Viktorovitch P. III–V-on-Si photonic crystal vertical-cavity surfaceemitting laser arrays for wavelength division multiplexing. IEEE Photonics Technology Letters, 2013, 25(12): 1111–1113

    Article  Google Scholar 

  69. Liu A, Wolf P, Schulze J H, Bimberg D. Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry-Pérot filter array with GaInP sacrificial layer. IEEE Photonics Journal, 2016, 8(1): 2700509

    Google Scholar 

  70. Kumari S, Gustavsson J S, Wang R, Haglund E P, Westbergh P, Sanchez D, Haglund E, Haglund Å, Bengtsson J, Thomas N L, Roelkens G, Larsson A, Baets R. Integration of GaAs-based VCSEL array on SiN platform with HCG. Proceedings of the Society for Photo-Instrumentation Engineers, 2015, 9372: 93720U-1–93720U-7

    Google Scholar 

  71. Schares L, Kash J A, Doany F E, Schow C L, Schuster C, Kuchta D M, Pepeljugoski P K, Trewhella J M, Baks C W, John R A, Shan L, Kwark Y H, Budd R A, Chiniwalla P, Libsch F R, Rosner J, Tsang C K, Patel C S, Schaub J D, Dangel R, Horst F, Offrein B J, Kucharski D, Guckenberger D, Hegde S, Nyikal H, Lin C K, Tandon A, Trott G R, Nystrom M, Bour D P, Tan M R T, Dolfi D W. Terabus: terabit/second-class card-level optical interconnect technologies. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(5): 1032–1044

    Article  Google Scholar 

  72. Kaur K S, Subramanian A Z, Cardile P, Verplancke R, Van Kerrebrouck J, Spiga S, Meyer R, Bauwelinck J, Baets R, Van Steenberge G. Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms. Optics Express, 2015, 23(22): 28264–28270

    Article  Google Scholar 

  73. Louderback D A, Pickrell G W, Lin H C, Fish M A, Hindi J J, Guilfoyle P S. VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings. Electronics Letters, 2004, 40(17): 1064–1065

    Article  Google Scholar 

  74. Haglund E P, Kumari S, Westbergh P, Gustavsson J S, Roelkens G, Baets R, Larsson A. Silicon-integrated short-wavelength hybridcavity VCSEL. Optics Express, 2015, 23(26): 33634–33640

    Article  Google Scholar 

  75. Ferrier L, Romeo P R, Letartre X, Drouard E, Viktorovitch P. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide. Optics Express, 2010, 18(15): 16162–16174

    Article  Google Scholar 

  76. Ferrara J, Yang W, Zhu L, Qiao P, Chang-Hasnain C J. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Optics Express, 2015, 23(3): 2512–2523

    Article  Google Scholar 

  77. Chung I S, Mørk J. Silicon-photonics light source realized by III–V/ Si-grating-mirror laser. Applied Physics Letters, 2010, 97(15): 151113

    Article  Google Scholar 

  78. Park G C, Xue W, Taghizadeh A, Semenova E, Yvind K, Mørk J, Chung I S. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser & Photonics Reviews, 2015, 9(3): L11–L15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjin Liu.

Additional information

Anjin Liu received the Bachelor degree in electronics of science and technology in 2006 from Huazhong University of Science and Technology, Wuhan, China, and Ph.D. degree in physical electronics from Institute of Semiconductors, Chinese Academy of Sciences (CAS), Beijing, in 2011, both with honors.

From 2006 to 2011, he was with Institute of Semiconductors, CAS, and was involved in the research on single-mode VCSELs with surface microstructures. From 2012 to July 2013, he was a Postdoc Fellow in Fraunhofer Heinrich Hertz Institute in Berlin, and worked on polymer OEIC. In August of 2013, he joined the group of Prof. Dieter H. Bimberg in Technische Universität Berlin, and explores surface emitters with surface nanostructures for high-speed modulation and new applications. In 2016, he is appointed as Associate Professor with CAS Pioneer Hundred Talents Program in Institute of Semiconductors, CAS. His research interests include modeling, fabricating, and characterizing passive and active photonic devices. He has authored or coauthored about 50 papers in scientific journals and conference proceedings, and holds 1 filed US patent and 12 issued Chinese patents.

He was the recipients of Special Prize of President Scholarship for Postgraduate Students, CAS (2011), Excellent Doctoral Dissertation Award, CAS (2012), and Alexander von Humboldt Postdoctoral Research Fellowship, Germany (2013).

Dieter H. Bimberg received the Diploma in physics and the Ph.D. degree from Goethe University, Frankfurt, in 1968 and 1971, respectively. From 1972 to 1979, he held a Principal Scientist position at the Max Planck-Institute for Solid State Research in Grenoble/France and Stuttgart. In 1979, he was appointed as Professor of Electrical Engineering, Technical University of Aachen.

In 1981, he was appointed to the Chair of Applied Solid State Physics at Technische Universität Berlin. He was elected in 1990 Excecutive Director of the Solid State Physics Institute at TU Berlin, a position he hold until 2011. In 2004, he founded the Center of Nanophotonics at TU Berlin. From 2006 to 2011, he was the chairman of the board of the German Federal Government Centers of Excellence in Nanotechnologies.

His honors include the Russian State Prize in Science and Technology 2001, his election to the German Academy of Sciences Leopoldina in 2004, to the Russian Academy of Sciences in 2011, and to the US National Academy of Engineering in 2014, as Fellow of the American Physical Society and IEEE in 2004 and 2010, respectively, the Max-Born-Award and Medal 2006, awarded jointly by IoP and DPG, the William Streifer Award of the Photonics Society of IEEE in 2010, the UNESCO Nanoscience Medal 2012, and the Heinrich-Welker-Award and medal in 2015. The University of Lancaster bestowed in 2015 the D.Sc.h.c. to him.

He has authored more than 1200 papers, 25 patents, and 6 books resulting in more than 48000 citations worldwide and a Hirsch factor of 98.

His research interests include the growth and physics of nanostructures and nanophotonic devices, ultrahigh speed and energy efficient photonic devices for future datacom systems, single/entangled photon emitters for quantum cryptography and ultimate nanomemories based on quantum dots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Bimberg, D. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects. Front. Optoelectron. 9, 249–258 (2016). https://doi.org/10.1007/s12200-016-0611-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-016-0611-6

Keywords

Navigation