Skip to main content
Log in

A tutorial introduction to graphene-microfiber waveguide and its applications

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Graphene-microfiber with the advantage of graphene material and the microfiber has been hailed as a wonderful waveguide in optics. A tutorial introduction to the graphene-microfiber (GMF) waveguides including the effect of graphene on waveguide, fabrication and applications has been presented. Here, we reviewed recent progress in the graphene waveguides from mode-locking and Q-switching in fiber laser to gas sensing and optical modulation. A brief outlook for opportunities and challenges of GMF in the future has been presented. With the novel nanotechnology emerging, GMF could offer new possibilities for future-optic circuits, systems and networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622

    Article  Google Scholar 

  2. Avouris P. Graphene: electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294

    Article  Google Scholar 

  3. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Article  Google Scholar 

  4. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9-10): 351–355

    Article  Google Scholar 

  5. Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 2008, 100(1): 016602-1–016602-4

    Article  Google Scholar 

  6. Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R. Gate-variable optical transitions in graphene. Science, 2008, 320(5873): 206–209

    Article  Google Scholar 

  7. Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308-1–1308-7

    Article  Google Scholar 

  8. Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T, Novoselov K S, Ferrari A C. Rayleigh imaging of graphene and graphene layers. Nano Letters, 2007, 7(9): 2711–2717

    Article  Google Scholar 

  9. Almeida V R, Barrios C A, Panepucci R R, Lipson M. All-optical control of light on a silicon chip. Nature, 2004, 431(7012): 1081–1084

    Article  Google Scholar 

  10. Pacifici D, Lezec H J, Atwater H A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photonics, 2007, 1(7): 402–406

    Article  Google Scholar 

  11. Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189

    Article  Google Scholar 

  12. Seibert K, Cho G C, Kütt W, Kurz H, Reitze D H, Dadap J I, Ahn H, Downer M C, Malvezzi A M. Femtosecond carrier dynamics in graphite. Physical Review B: Condensed Matter and Materials Physics, 1990, 42(5): 2842–2851

    Article  Google Scholar 

  13. Breusing M, Ropers C, Elsaesser T. Ultrafast carrier dynamics in graphite. Physical Review Letters, 2009, 102(8): 086809-1–086809-4

    Article  Google Scholar 

  14. Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W A, First P N, Norris T B. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402-1–157402-4

    Article  Google Scholar 

  15. Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401-1–097401-4

    Article  Google Scholar 

  16. Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858

    Article  Google Scholar 

  17. Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhou X, Wu B, Chiang K S. Four-wave mixing in a microfiber attached onto a graphene film. IEEE Photonics Technology Letters, 2014, 26(3): 249–252

    Article  Google Scholar 

  18. Wu Y, Yao B C, Feng Q Y, Cao X L, Zhou X Y, Rao Y J, Gong Y, Zhang W L, Wang Z G, Chen Y F, Chiang K S. Generation of cascaded four-wave-mixing with graphene-coated microfiber. Photonics Research, 2015, 3(2): A64–A68

    Article  Google Scholar 

  19. Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature Nanotechnology, 2009, 4(12): 839–843

    Article  Google Scholar 

  20. Kim K, Choi J, Kim T, Cho S, Chung H. A role for graphen in silicon-based semiconductor devices. Nature, 2011, 479((7373)): 338–344

    Article  Google Scholar 

  21. Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485

    Article  Google Scholar 

  22. Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411–415

    Article  Google Scholar 

  23. Bao Q, Loh K P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694

    Article  Google Scholar 

  24. Tong L, Lou J, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025–1035

    Article  Google Scholar 

  25. Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816–819

    Article  Google Scholar 

  26. Brambilla G, Finazzi V, Richardson D J. Ultra-low-loss optical fiber nanotaper. Optics Express, 2004, 12(10): 2258–2263

    Article  Google Scholar 

  27. Brambilla G, Xu F, Horak P, Jung Y, Koizumi F, Sessions N P, Koukharenko E, Feng X, Murugan G S, Wilkinson J S, Richardson D J. Optical fiber nanowires and microwires: fabrication and applications. Advances in Optics and Photonics, 2009, 1(1): 107–161

    Article  Google Scholar 

  28. Liu Z B, Feng M, Jiang WS, Xin W, Wang P, Sheng Q W, Liu Y G, Wang D N, Zhou W Y, Tian J G. Broadband all-optical modulation using a graphene-covered-microfiber. Laser Physics Letters, 2013, 10(6): 065901-1–065901-5

    Article  Google Scholar 

  29. Li W, Chen B, Meng C, Fang W, Xiao Y, Li X, Hu Z, Xu Y, Tong L, Wang H, Liu W, Bao J, Shen Y R. Ultrafast all-optical graphene modulator. Nano Letters, 2014, 14(2): 955–959

    Article  Google Scholar 

  30. Wu Y, Yao B, Cheng Y, Rao Y, Gong Y, Zhang W, Wang Z, Chen Y. Hybrid graphene-microfiber waveguide for chemical gas sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (1): 4400206-1–4400206-6

    Google Scholar 

  31. Yao B, Wu Y, Cheng Y, Zhang A, Cong Y, Rao Y, Wang Z, Chen Y. All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sensors and Actuators B: Chemical, 2014, 194: 142–148

    Article  Google Scholar 

  32. Yao B C, Wu Y, Zhang A Q, Rao Y J, Wang Z G, Cheng Y, Gong Y, Zhang W L, Chen Y F, Chiang K S. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Optics Express, 2014, 22(23): 28154–28162

    Article  Google Scholar 

  33. Wu Y, Yao B, Zhang A, Rao Y, Wang Z, Cheng Y, Gong Y, Zhang W, Chen Y, Chiang K S. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Optics Letters, 2014, 39(5): 1235–1237

    Article  Google Scholar 

  34. Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C. Graphene mode-locked ultrafast laser. ACS Nano, 2010, 4(2): 803–810

    Article  Google Scholar 

  35. He X, Liu Z, Wang D, Yang M, Liao C R, Zhao X. Passively modelocked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation. Journal of Lightwave Technology, 2012, 30(7): 984–989

    Article  Google Scholar 

  36. Wang J, Luo Z, Zhou M, Ye C, Fu H, Cai Z, Cheng H, Xu H, Qi W. Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker. IEEE Photonics Journal, 2012, 4(5): 1295–1305

    Article  Google Scholar 

  37. Sheng Q, Feng M, Xin W, Han T, Liu Y, Liu Z, Tian J. Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber. Optics Express, 2013, 21(12): 14859–14866

    Article  Google Scholar 

  38. Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, JiangW S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247

    Article  Google Scholar 

  39. He X, Wang D N, Liu Z. Pulse-width tuning in a passively modelocked fiber laser with graphene saturable absorber. IEEE Photonics Technology Letters, 2014, 26(4): 360–363

    Article  Google Scholar 

  40. Luo Z Q, Wang J Z, Zhou M, Xu H Y, Cai Z P, Ye C Y. Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field. Laser Physics Letters, 2012, 9(3): 229–233

    Article  Google Scholar 

  41. Luo A, Zhu P, Liu H, Zheng X, Zhao N, Liu M, Cui H, Luo Z, Xu W. Microfiber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a fiber laser. Optics Express, 2014, 22(22): 27019–27025

    Article  Google Scholar 

  42. Zhao N, Liu M, Liu H, Zheng X, Ning Q, Luo A, Luo Z, Xu W. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Optics Express, 2014, 22(9): 10906–10913

    Article  Google Scholar 

  43. Liu C, Ye C, Luo Z, Cheng H, Wu D, Zheng Y, Liu Z, Qu B. Highenergy passively Q-switched 2 µm Tm3+-doped double-clad fiber laser using graphene-oxide-deposited fiber taper. Optics Express, 2013, 21(1): 204–209

    Article  Google Scholar 

  44. Sheng Q W, Feng M, Xin W, Guo H, Han T Y, Li Y G, Liu Y G, Gao F, Song F, Liu Z B, Tian J G. Tunable graphene saturable absorber with cross absorption modulation for mode-locking in fiber laser. Applied Physics Letters, 2014, 105(4): 041901-1–041901-5

    Article  Google Scholar 

  45. Ren A, Feng M, Song F, Ren Y, Yang S, Yang Z, Li Y, Liu Z, Tian J. Actively Q-switched ytterbium-doped fiber laser by an all-optical Q-switcher based on graphene saturable absorber. Optics Express, 2015, 23(16): 21490–21496

    Article  Google Scholar 

  46. Ahmad H, Dernaika M, Harun S W. All-fiber dual wavelength passive Q-switched fiber laser using a dispersion-decreasing taper fiber in a nonlinear loop mirror. Optics Express, 2014, 22(19): 22794–22801

    Article  Google Scholar 

  47. Qi Y, Liu H, Cui H, Huang Q, Ning Q, Liu M, Luo Z, Luo A, XuW, Graphene-deposited microfiber photonics device for ultrahighrepetition rate pulse generation in a fiber laser. Optics Express, 2015, 23(14): 17720–17726

  48. Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 2009, 19(19): 3077–3083

    Article  Google Scholar 

  49. Vakil A, Engheta N. Transformation optics using graphene. Science, 2011, 332(6035): 1291–1294

    Article  Google Scholar 

  50. Yan S, Zheng B, Chen J, Xu F, Lu Y, Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator. Applied Physics Letters, 2015, 107: 053502-1–053502-4

    Article  Google Scholar 

  51. He X, Zhang X, Zhang H, Xu M. Graphene covered on microfiber exhibiting polarization and polarization-dependent saturable absorption. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 4500107-1–4500107-7

    Google Scholar 

  52. Sun X, Qiu C, Wu J, Zhou H, Pan T, Mao J, Yin X, Liu R, Gao W, Fang Z, Su Y. Broadband photodetection in a microfiber-graphene device. Optics Express, 2015, 23(19): 25209–25216

    Article  Google Scholar 

  53. Xing X, Zheng J, Sun C, Li F, Zhu D, Lei L, Cai X, Wu T. Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation. Optics Express, 2013, 21(26): 31862–31871

    Article  Google Scholar 

  54. Zhu B, Ren G, Gao Y, Yang Y, Lian Y, Jian S. Graphene-coated tapered nanowire infrared probe: a comparison with metal-coated probes. Optics Express, 2014, 22(20): 24096–24103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying He.

Additional information

Xiaoying He received the B.S. degree in physics from Hubei Normal University. She received the M.S. and Ph.D. degrees from Huazhong University of Science and Technology, in 2006 and 2009, respectively. From 2005 to 2006, she worked with Accelink Technology Company Ltd., Wuhan, China. From 2007 to 2008, she was a research assistant in The Hong Kong Polytechnic University. From 2009 to 2011, she worked as a Post-doctor Research Fellow at The Hong Kong Polytechnic University. She had joined Fudan University in 2012 as a Lecture of Department of Optical Science and Technology. In 2015, she worked as an associate professor in Fudan University. Her main research interests are semiconductor optoelectronic devices, fiber laser, optical fiber sensors and optical design.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Xu, M., Zhang, X. et al. A tutorial introduction to graphene-microfiber waveguide and its applications. Front. Optoelectron. 9, 535–543 (2016). https://doi.org/10.1007/s12200-016-0541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-016-0541-3

Keywords

Navigation