Advertisement

Frontiers of Optoelectronics

, Volume 9, Issue 4, pp 565–570 | Cite as

Broadband coplane metamaterial filter based on two nested split-ring-resonators

  • Benxin Wang
  • Xiang Zhai
  • Guizhen Wang
  • Weiqing Huang
  • Lingling Wang
Research Article

Abstract

Split ring resonators (SRRs)-based broadband metamaterial filters have attracted considerable attention due to their great prospect of practical applications. These filters had been usually obtained by stacking multiple different-sized metallic patterns, making their fabrication quite troublesome. Herein, we presented a simple design of broadband filter composed of two nested SRRs. The resonance bandwidth of the metamaterial filter gradually increased with the decrease of the arm length of the inner SRR. The increase in the resonance bandwidth was attributed to the increase in the radiation of the entire structure. Moreover, the bandwidth of the metamaterial can be further broadened by decreasing the period of the structure. The proposed filter provides a meaningful way toward expanding the bandwidth operating range from narrowband to broadband in an effective way.

Keywords

metamaterial broadband filter split-ring-resonators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980CrossRefGoogle Scholar
  2. 2.
    Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969CrossRefGoogle Scholar
  3. 3.
    Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788–792CrossRefGoogle Scholar
  4. 4.
    Pendry J B, Holden A J, Robbins D J, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084CrossRefGoogle Scholar
  5. 5.
    Yang J, Sauvan C, Liu H T, Lalanne P. Theory of fishnet negativeindex optical metamaterials. Physical Review Letters, 2011, 107(4): 043903CrossRefGoogle Scholar
  6. 6.
    Dolling G, Enkrich C, Wegener M, Zhou J F, Soukoulis C M, Linden S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198–3200CrossRefGoogle Scholar
  7. 7.
    Liu N, Liu H, Zhu S, Giessen H. Stereometamaterials. Nature Photonics, 2009, 3(3): 157–162CrossRefGoogle Scholar
  8. 8.
    Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901CrossRefGoogle Scholar
  9. 9.
    Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095CrossRefGoogle Scholar
  10. 10.
    Hussain S, Woo J M, Jang J. Dual-band terahertz metamaterials based on nested split ring resonators. Applied Physics Letters, 2012, 101(9): 091103CrossRefGoogle Scholar
  11. 11.
    Wang B, Wang L, Wang G, Wang L, Zhai X, Li X, Huang W. A simple nested metamaterial structure with enhanced bandwidth performance. Optics Communications, 2013, 303: 13–14CrossRefGoogle Scholar
  12. 12.
    Chowdhury D R, Singh R, Reiten M, Chen H T, Taylor A J, O’Hara J F, Azad A K. A broadband planar terahertz metamaterial with nested structure. Optics Express, 2011, 19(17): 15817–15823CrossRefGoogle Scholar
  13. 13.
    Shen N, Massaouti M, Gokkavas M, Manceau J, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403CrossRefGoogle Scholar
  14. 14.
    Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X, Averitt R D. Reconfigurable terahertz metamaterials. Physical Review Letters, 2009, 103(14): 147401CrossRefGoogle Scholar
  15. 15.
    Wu D, Fang N, Sun C, Zhang X, Padilla W J, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203CrossRefGoogle Scholar
  16. 16.
    Padilla WJ, Cich MJ, Azad A K, Averitt R D, Taylor A J, Chen H T. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151CrossRefGoogle Scholar
  17. 17.
    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J.Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402Google Scholar
  18. 18.
    Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technology Letters, 2014, 26(2): 111–114CrossRefGoogle Scholar
  19. 19.
    Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Frequency continuous tunable terahertz metamaterial absorber. Journal of Lightwave Technology, 2014, 32(6): 1183–1189CrossRefGoogle Scholar
  20. 20.
    Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102CrossRefGoogle Scholar
  21. 21.
    Han N R, Chen Z C, Lim C S, Ng B, Hong M H. Broadband multilayer terahertz metamaterials fabrication and characterization on flexible substrates. Optics Express, 2011, 19(8): 6990–6998CrossRefGoogle Scholar
  22. 22.
    Li Z, Ding Y J. Terahertz broadband-stop filters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500705MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li X, Yang L, Hu C, Luo X, Hong M. Tunable bandwidth of bandstop filter by metamaterial cell coupling in optical frequency. Optics Express, 2011, 19(6): 5283–5289CrossRefGoogle Scholar
  24. 24.
    Liu J, Zhang J, Cai L, Xu B, Song G. Tunable omnidirectional broadband band-stop filter in symmetric hybrid plasmonic structures. Plasmonics, 2013, 8(2): 1101–1108CrossRefGoogle Scholar
  25. 25.
    Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D, Wang G, Jia X, Lu H, Kang L, Xu W, Chen J, Wu P. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Applied Physics B, Lasers and Optics, 2013, 113(2): 285–290CrossRefGoogle Scholar
  26. 26.
    Chiang Y, Yang C, Yang Y, Pan C, Yen T. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Applied Physics Letters, 2011, 99(19): 191909CrossRefGoogle Scholar
  27. 27.
    Rigi-Tamandani A, Ahmadi-Shokouh J, Tavakoli S. Wideband planar split ring resonator based metamaterials. Progress In Electromagnetics Research M, 2013, 28: 115–128CrossRefGoogle Scholar
  28. 28.
    Pan Z Y, Zhang P, Chen Z C, Vienne G, Hong M H. Hybrid SRRs design and fabrication for broadband terahertz metamaterials. IEEE Photonics Journal, 2012, 4(5): 1267–1272CrossRefGoogle Scholar
  29. 29.
    Zhou J, Economon E N, Koschny T, Soukoulis C M. Unifying approach to left-handed material design. Optics Letters, 2006, 31(24): 3620–3622CrossRefGoogle Scholar
  30. 30.
    Wokaun A, Gordon J P, Liao P F. Radiation damping in surfaceenhanced raman scattering. Physical Review Letters, 1982, 48(14): 957–960CrossRefGoogle Scholar
  31. 31.
    Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland G V. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8(30): 3540–3546CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Benxin Wang
    • 1
  • Xiang Zhai
    • 1
  • Guizhen Wang
    • 2
  • Weiqing Huang
    • 1
  • Lingling Wang
    • 1
  1. 1.School of Physics and ElectronicsHunan UniversityChangshaChina
  2. 2.Modern Educational Technology CenterHunan Traditional Chinese Medical CollegeZhuzhouChina

Personalised recommendations