Skip to main content
Log in

Recent progress in colloidal quantum dot photovoltaics

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

The development of photovoltaic devices, solar cells, plays a key role in renewable energy sources. Semiconductor colloidal quantum dots (CQDs), including lead chacolgenide CQDs that have tunable electronic bandgaps from infrared to visible, serve as good candidates to harvest the broad spectrum of sunlight. CQDs can be processed from solution, allowing them to be deposited in a roll-to-roll printing process compatible with low-cost fabrication of large area solar panels. Enhanced multiexciton generation process in CQD, compared with bulk semiconductors, enables the potential of exceeding Shockley-Queisser limit in CQD photovoltaics. For these advantages, CQDs photovoltaics attract great attention in academics, and extensive research works accelerate the development of CQD based solar cells. The record efficiency of CQD solar cells increased from 5.1% in 2011 to 9.9% in 2015. The improvement relies on optimized material processing, device architecture and various efforts to improve carrier collection efficiency. In this review, we have summarized the progress of CQD photovoltaics in year 2012 and after. Here we focused on the theoretical and experimental works that improve the understanding of the device physics in CQD solar cells, which may guide the development of CQD photovoltaics within the research community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rossetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. Journal of Chemical Physics, 1983, 79(2): 1086–1088

    Article  Google Scholar 

  2. Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715

    Article  Google Scholar 

  3. Shirasaki Y, Supran G J, Bawendi M G, Bulovic V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7(1): 13–23

    Article  Google Scholar 

  4. Konstantatos G, Sargent E H. Colloidal quantum dot photodetectors. Infrared Physics & Technology, 2011, 54(3): 278–282

    Article  Google Scholar 

  5. Kim J Y, Voznyy O, Zhitomirsky D, Sargent E H. 25th anniversary article: colloidal quantum dot materials and devices: a quartercentury of advances. Advanced Materials, 2013, 25(36): 4986–5010

    Article  Google Scholar 

  6. Kim M R, Ma D. Quantum-dot-based solar cells: recent advances, strategies, and challenges. Journal of Physical Chemistry Letters, 2015, 6(1): 85–99

    Article  Google Scholar 

  7. Kramer I J, Sargent E H. The architecture of colloidal quantum dot solar cells: materials to devices. Chemical Reviews, 2014, 114(1): 863–882

    Article  Google Scholar 

  8. Lan X, Masala S, Sargent E H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13(3): 233–240

    Article  Google Scholar 

  9. Goetzberger A, Knobloch J, VoßB. Crystalline Silicon Solar Cells. 1st ed. New York: John Wiley & Sons Ltd, 1998, 49–86

    Google Scholar 

  10. Voznyy O, Thon S M, Ip A H, Sargent E H. Dynamic trap formation and elimination in colloidal quantum dots. Journal of Physical Chemistry Letters, 2013, 4(6): 987–992

    Article  Google Scholar 

  11. Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed. New York: John Wiley & Sons Ltd, 2007, 7–72

    Google Scholar 

  12. Ocier C R, Whitham K, Hanrath T, Robinson R D. nanocrystal fieldeffect transistors. Journal of Physical Chemistry C, 2014, 118(7): 3377–3385

    Article  Google Scholar 

  13. Liu Y, Tolentino J, Gibbs M, Ihly R, Perkins C L, Liu Y, Crawford N, Hemminger J C, Law M. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2∙V–1∙s–1. Nano Letters, 2013, 13(4): 1578–1587

    Google Scholar 

  14. Otto T, Miller C, Tolentino J, Liu Y, Law M, Yu D. Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors. Nano Letters, 2013, 13(8): 3463–3469

    Article  Google Scholar 

  15. Ip A H, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp KW, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7(9): 577–582

    Article  Google Scholar 

  16. Ning Z, Ren Y, Hoogland S, Voznyy O, Levina L, Stadler P, Lan X, Zhitomirsky D, Sargent E H. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Advanced Materials, 2012, 24(47): 6295–6299

    Article  Google Scholar 

  17. Jeong K S, Tang J, Liu H, Kim J, Schaefer AW, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent E H, Asbury J B. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 2012, 6(1): 89–99

    Article  Google Scholar 

  18. Carey G H, Levina L, Comin R, Voznyy O, Sargent E H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Advanced Materials, 2015, 27(21): 3325–3330

    Article  Google Scholar 

  19. Zhitomirsky D, Voznyy O, Hoogland S, Sargent E H. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano, 2013, 7(6): 5282–5290

    Article  Google Scholar 

  20. Kemp KW, Wong C T O, Hoogland S H, Sargent E H. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Applied Physics Letters, 2013, 103(21): 211101

    Article  Google Scholar 

  21. Zhitomirsky D, Voznyy O, Levina L, Hoogland S, Kemp KW, Ip A H, Thon S M, Sargent E H. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5: 3803

    Article  Google Scholar 

  22. Carey G H, Kramer I J, Kanjanaboos P, Moreno-Bautista G, Voznyy O, Rollny L, Tang J A, Hoogland S, Sargent E H. Electronically active impurities in colloidal quantum dot solids. ACS Nano, 2014, 8(11): 11763–11769

    Article  Google Scholar 

  23. Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X, Furukawa M, Levina L, Sargent E H. Quantum junction solar cells. Nano Letters, 2012, 12(9): 4889–4894

    Article  Google Scholar 

  24. Kemp KW, Labelle A J, Thon SM, Ip A H, Kramer I J, Hoogland S, Sargent E H. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Advanced Energy Materials, 2013, 3(7): 917–922

    Article  Google Scholar 

  25. Voznyy O, Zhitomirsky D, Stadler P, Ning Z, Hoogland S, Sargent E H. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 2012, 6(9): 8448–8455

    Article  Google Scholar 

  26. Zhitomirsky D, Furukawa M, Tang J, Stadler P, Hoogland S, Voznyy O, Liu H, Sargent E H. N-type colloidal-quantum-dot solids for photovoltaics. Advanced Materials, 2012, 24(46): 6181–6185

    Article  Google Scholar 

  27. Ning Z, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H, Rollny L, Labelle A, Carey G, Sutherland B, Hill I, Amassian A, Liu H, Tang J, Bakr O M, Sargent E H. Air-stable n-type colloidal quantum dot solids. Nature Materials, 2014, 13(8): 822–828

    Article  Google Scholar 

  28. Stavrinadis A, Rath A K, de Arquer F P, Diedenhofen S L, Magén C, Martinez L, So D, Konstantatos G. Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nature Communications, 2013, 4: 2981

    Article  Google Scholar 

  29. Ko D K, Brown P R, Bawendi MG, Bulovic V. p-i-n Heterojunction solar cells with a colloidal quantum-dot absorber layer. Advanced Materials, 2014, 26(28): 4845–4850

    Article  Google Scholar 

  30. Chuang C H, Brown P R, Bulovic V, Bawendi M G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 2014, 13(8): 796–801

    Article  Google Scholar 

  31. Ning Z, Zhitomirsky D, Adinolfi V, Sutherland B, Xu J, Voznyy O, Maraghechi P, Lan X, Hoogland S, Ren Y, Sargent E H. Graded doping for enhanced colloidal quantum dot photovoltaics. Advanced Materials, 2013, 25(12): 1719–1723

    Article  Google Scholar 

  32. Yuan M, Zhitomirsky D, Adinolfi V, Voznyy O, Kemp K W, Ning Z, Lan X, Xu J, Kim J Y, Dong H, Sargent E H. Doping control via molecularly engineered surface ligand coordination. Advanced Materials, 2013, 25(39): 5586–5592

    Article  Google Scholar 

  33. Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460

    Article  Google Scholar 

  34. Kramer I J, Zhitomirsky D, Bass J D, Rice PM, Topuria T, Krupp L, Thon S M, Ip A H, Debnath R, Kim H C, Sargent E H. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials, 2012, 24 (17): 2315–2319

    Article  Google Scholar 

  35. Lan X, Bai J, Masala S, Thon S M, Ren Y, Kramer I J, Hoogland S, Simchi A, Koleilat G I, Paz-Soldan D, Ning Z, Labelle A J, Kim J Y, Jabbour G, Sargent E H. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Advanced Materials, 2013, 25(12): 1769–1773

    Article  Google Scholar 

  36. Adachi MM, Labelle A J, Thon SM, Lan X, Hoogland S, Sargent E H. Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Scientific Reports, 2013, 3: 2928

    Google Scholar 

  37. Mahpeykar S M, Xiong Q, Wang X. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes. Optics Express, 2014, 22(S6 Suppl 6): A1576–A1588

    Article  Google Scholar 

  38. Mihi A, Bernechea M, Kufer D, Konstantatos G. Coupling resonant modes of embedded dielectric microspheres in solution-processed solar cells. Advanced Optical Materials, 2013, 1(2): 139–143

    Article  Google Scholar 

  39. Kim S, Kim J K, Gao J, Song J H, An H J, You T S, Lee T S, Jeong J R, Lee E S, Jeong J H, Beard MC, Jeong S. Lead sulfide nanocrystal quantum dot solar cells with trenched ZnO fabricated via nanoimprinting. ACS Applied Materials & Interfaces, 2013, 5(9): 3803–3808

    Article  Google Scholar 

  40. Mihi A, Beck F J, Lasanta T, Rath A K, Konstantatos G. Imprinted electrodes for enhanced light trapping in solution processed solar cells. Advanced Materials, 2014, 26(3): 443–448

    Article  Google Scholar 

  41. Paz-Soldan D, Lee A, Thon S M, Adachi M M, Dong H, Maraghechi P, Yuan M, Labelle A J, Hoogland S, Liu K, Kumacheva E, Sargent E H. Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. Nano Letters, 2013, 13(4): 1502–1508

    Article  Google Scholar 

  42. Beck F J, Stavrinadis A, Diedenhofen S L, Lasanta T, Konstantatos G. Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics. ACS Photonics, 2014, 1(11): 1197–1205

    Article  Google Scholar 

  43. Koleilat G I, Kramer I J, Wong C T O, Thon S M, Labelle A J, Hoogland S, Sargent E H. Folded-light-path colloidal quantum dot solar cells. Scientific Reports, 2013, 3: 2166

    Article  Google Scholar 

  44. Labelle A J, Thon S M, Masala S, Adachi M M, Dong H, Farahani M, Ip A H, Fratalocchi A, Sargent E H. Colloidal quantum dot solar cells exploiting hierarchical structuring. Nano Letters, 2015, 15(2): 1101–1108

    Article  Google Scholar 

  45. Fischer A, Rollny L, Pan J, Carey G H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Kim J Y, Bakr O M, Sargent E H. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Advanced Materials, 2013, 25(40): 5742–5749

    Article  Google Scholar 

  46. Ning Z, Dong H, Zhang Q, Voznyy O, Sargent E H. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano, 2014, 8 (10): 10321–10327

    Article  Google Scholar 

  47. Kramer I J, Moreno-Bautista G, Minor J C, Kopilovic D, Sargent E H. Colloidal quantum dot solar cells on curved and flexible substrates. Applied Physics Letters, 2014, 105(16): 163902

    Article  Google Scholar 

  48. Kramer I J, Minor J C, Moreno-Bautista G, Rollny L, Kanjanaboos P, Kopilovic D, Thon S M, Carey G H, Chou K W, Zhitomirsky D, Amassian A, Sargent E H. Efficient spray-coated colloidal quantum dot solar cells. Advanced Materials, 2015, 27(1): 116–121

    Article  Google Scholar 

  49. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xihua Wang.

Additional information

Xihua Wang received the B.Sc. degree in physics from Peking University (Beijing) in 2003, and the Master and Ph.D. degrees in physics from Boston University in 2005 and 2009, respectively. He was a Postdoctoral Fellow in the Department of Electrical and Computer Engineering at the University of Toronto from 2009 to 2012. Since July 2012, he has been an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Alberta. Dr. Wang’s research interests are in the area of nanomaterials and nanofabrication for photovoltaics, LEDs, photodetectors, and flexible electronics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. Recent progress in colloidal quantum dot photovoltaics. Front. Optoelectron. 8, 241–251 (2015). https://doi.org/10.1007/s12200-015-0524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-015-0524-9

Keywords

Navigation