Skip to main content
Log in

Analysis and modeling of ridge waveguide quarterly wavelength shifted distributed feedback laser with three rate equations

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

In this paper, ridge waveguide quarterly wavelength shifted distributed feedback (RW-QWSDFB) laser was modeled and analyzed. In this behavioral model, some characteristics of the device, such as threshold current, line width, power of output wave, spectrum of output wave, and laser stability in high powers, were investigated in accordance with different physical and geographical parameters such as sizes and structures of the layers. Considering a new proposed algorithm, the analysis of the mentioned structures was performed using transfer matrix method (TMM), the solution of coupled waves and carrier rate equations. The results showed the advantages of some parameters in this structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dumke W P. Interband transitions and maser action. Physical Review, 1962, 127(5): 1559–1563

    Article  Google Scholar 

  2. Hall R N, Fenner G E, Kingsley J D, Soltys T J, Carlson R O. Coherent light emission from GaAs junctions. Physical Review Letters, 1962, 9(9): 366–368

    Article  Google Scholar 

  3. Nathan M I, Dumk W P, Burns G, Dill F H, Lasher G. Stimulated emission of radiation from GaAs p-n junctions. Applied Physics Letters, 1962, 1(3): 62–64

    Article  Google Scholar 

  4. Quist TM, Rediker R H, Keyes R J, Krag WE, Lax B, Mcwhorter A L, Zeigler H J. Semiconductor maser of GaAs. Applied Physics Letters, 1962, 1(4): 91–92

    Article  Google Scholar 

  5. Holonyak N, Bevacqua S F. Coherent (visible) light emission from Ga(As1–xPx) junctions. Applied Physics Letters, 1962, 1(4): 82–84

    Article  Google Scholar 

  6. Born M, Wolf E. Principle of Optics. 6th ed. Oxford: Pergamon Press, 1985, Section 7.6.2

    Google Scholar 

  7. Hayashi I, Panish M, Foy F. A low-threshold room-temperature injection laser. IEEE Journal of Quantum Electronics, 1969, 5(4): 211–212

    Article  Google Scholar 

  8. Kressel H, Nelson H. Close confinement gallium arsenide p-n junction laser with reduced optical loss at room temperature. RCA Review, 1969, 30: 106–113

    Google Scholar 

  9. Hayashi I, Panish MB. GaAs-GaxAl1–x As heterostructure injection lasers which exhibit low thresholds at room temperature. Journal of Applied Physics, 1970, 41(1): 150–163

    Article  Google Scholar 

  10. Alferov Z I, Andreev V M, Korolkov V I, Portnoi E L, Tretyako D N. Injection properties of n-AlxGa1–x As p-GaAs heterojunctions. Soviet Physics Semiconductors, 1969, 2(7): 843–845

    Google Scholar 

  11. Hayashi I, Panish M B, Foy P W, Sumski S. Junction lasers which operate continuously at room temperature. Applied Physics Letters, 1970, 17(3): 109–111

    Article  Google Scholar 

  12. Alferov Z I, Andreev V M, Garbuzov D Z, Zhilyaev Y V, Morozov E P, Portnoi E L, Triofim V G. Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature. Soviet Physics Semiconductors, 1971, 4(9): 1573–1575

    Google Scholar 

  13. Ripper J E, Dyment J C, D’Asaro L A, Paoli T L. Stripe-geometry double heterostructure junction lasers: mode structure and CW operation above room temperature. Applied Physics Letters, 1971, 18(4): 155–157

    Article  Google Scholar 

  14. Burnham R D, Scifres D R. Etched buried heterostructure GaAs/ GaAlAs injection lasers. Applied Physics Letters, 1975, 27(9): 510–512

    Article  Google Scholar 

  15. Kaminow I P, Stulz LW, Ko J S, Miller B I, Feldman R D, Dewinter J C, Pollack M A. Low threshold ridge waveguide laser at 1.55 µm. Electronics Letters, 1983, 19(21): 877–879

    Article  Google Scholar 

  16. Lee T P, Burrus C A, Miller B I, Logan R A. AlxGa1–x As doubleheterostructure rib-waveguide injection laser. IEEE Journal of Quantum Electronics, 1975, 11(7): 432–435

    Article  Google Scholar 

  17. Hill D R. 140 Mbit/s optical fiber field demonstration systems. In: Sandbank C P, ed. Optical Fiber Communication Systems. Chichester: John Wiley & Sons, 1980

    Google Scholar 

  18. Zah C E, Pathk B, Favire F J, Pathak B, Bhat R, Caneau C, Lin P S D, Gozdz A S, Andreadakis N C, Koza M A, Lee T P. Monolithic integration of multiwavelength compressive-strained multiquantumwell distributed-feedback laser array with star coupler and optical amplifiers. Electronics Letters, 1992, 28(25): 2361–2362

    Article  Google Scholar 

  19. YoungM G, Koren U, Miller B I, Chien M, KochT L, Tennant DM, Feder K, Dreyer K, Raybon G. Six wavelength laser array with integrated amplifier and modulator. Electronics Letters, 1995, 31 (21): 1835–1836

    Article  Google Scholar 

  20. Katoh Y, Kunii T, Matsui Y, Kamijoh T. Four-wavelength DBR laser array with waveguide couplers fabricated using selective MOVPE growth. Optical and Quantum Electronics, 1996, 28(5): 533–540

    Article  Google Scholar 

  21. Ghafouri-Shiraz H, Lo B S K. Distributed feedback laser diodes. Chichester: John-Wiley & Sons, 1996, chapter 1

    Google Scholar 

  22. Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics, 1980, 16(3): 347–355

    Article  Google Scholar 

  23. MatthewsM R, CameronK H, Wyatt R, Devlin W J. Packaged frequency-stable tunable 20 kHz linewidth 1.5 µm InGaAsP external cavity laser. Electronics Letters, 1985, 21(3): 113–115

    Article  Google Scholar 

  24. Tsang W T. The cleaved coupled cavity (C3) laser. In: Semiconductors and semimetals. New York: Academic Press, 1985, 22(B), chapter 5

    Google Scholar 

  25. Coldren L A, Koch T L. Analysis and design of coupled-cavity lasers-Parts 1: threshold gain analysis and design guidelines. IEEE Journal of Quantum Electronics, 1984, 20(6): 659–670

    Article  Google Scholar 

  26. Tsang WT, Olsson N A, Linke R A, Logan R A. 1.5 µm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning. Electronics Letters, 1983, 19(11): 415–417

    Article  Google Scholar 

  27. Nakamura M, Yariv A, Yen H W, Somekh S, Garvin H L. Optically pumped GaAs surface laser with corrugation feedback. Applied Physics Letters, 1973, 22(10): 515–516

    Article  Google Scholar 

  28. Kogelnik H, Shank C V. Coupled-wave theory of distributed feedback lasers. Journal of Applied Physics, 1972, 43(5): 2327–2335

    Article  Google Scholar 

  29. Nakamura M, Yariv A, Yen H W, Garmire E, Somekh S, Garvin H L. Laser oscillation in epitaxial GaAs waveguides with corrugation feedback. Applied Physics Letters, 1973, 23(5): 224–225

    Article  Google Scholar 

  30. Scifres D, Burnham R, Streifer W. A distributed feedback single heterojunction diode laser. IEEE Journal of Quantum Electronics, 1974, 10(9): 790–791

    Article  Google Scholar 

  31. Casey H C, Somekh S, Ilegems M. Room-temperature operation of low-threshold separate-confinement heterostructure injection laser with distributed feedback. Applied Physics Letters, 1975, 27(3): 142–144

    Article  Google Scholar 

  32. Utaka K, Akiba S, Sakai K, Matsushima Y. Room-temperature CW operation of distributed-feedback buried heterostructure InGaAsPInP laser emitting at 1.57 µm. Electronics Letters, 1981, 17(25–26): 961–963

    Article  Google Scholar 

  33. Uematsu Y, Okuda H, Kinoshita J. Room temperature CW operation of 1.3 µm distributed feedback GaInAsP/InP lasers. Electronics Letters, 1982, 18(20): 857–858

    Article  Google Scholar 

  34. Streifer W, Burnham R, Scifres D R. Effect of external reflectors on longitudinal modes of distributed feedback lasers. IEEE Journal of Quantum Electronics, 1975, 11(4): 154–161

    Article  Google Scholar 

  35. Zhou P, Lee G S. Chirped grating l/4-shifted distributed feedback laser with uniform longitudinal field distribution. Electronics Letters, 1990, 26(20): 1660–1661

    Article  Google Scholar 

  36. Utaka K, Akiba S, Sakai K, Matsushima Y. λ/4-shifted InGaAsP DFB laser by simultaneous holographic exposure of positive and negative photoresists. Electronics Letters, 1984, 20(24): 1008–1010

    Article  Google Scholar 

  37. Agrawal G P, Geusic J E, Anthony P J. Distributed feedback lasers with multiple phase-shift regions. Applied Physics Letters, 1988, 53 (3): 178–179

    Article  Google Scholar 

  38. Thijs P J A, Tiemeijer L F, Binsma J JM, Van D T. Progress in longwavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers. IEEE Journal of Quantum Electronics, 1994, 30(2): 477–499

    Article  Google Scholar 

  39. Morthier G, Vankwikelberge P, David K, Baets R. Improved performance of AR-coated DFB lasers for the introduction of gain coupling. IEEE Photonics Technology Letters, 1990, 2(3): 170–172

    Article  Google Scholar 

  40. Alam M F, Karim M A, Islam S. Effects of structural parameters on the external optical feedback sensitivity in DFB semiconductor lasers. IEEE Journal of Quantum Electronics, 1997, 33(3): 424–433

    Article  Google Scholar 

  41. Yu S F. Dynamic behavior of double-tapered-waveguide distributed feedback lasers. IEEE Journal of Quantum Electronics, 1997, 33(8): 1260–1267

    Article  Google Scholar 

  42. Fessant T. Multisection distributed feedback lasers with a phaseadjustment region and a nonuniform coupling coefficient for high immunity against spatial hole burning. Optics Communications, 1998, 148(1–3): 171–179

    Article  Google Scholar 

  43. Kinoshita J. Analysis of radiation mode effects on oscillating properties of DFB lasers. IEEE Journal of Quantum Electronics, 1999, 35(11): 1569–1583

    Article  Google Scholar 

  44. Winick K A. Longitudinal mode competition in chirped grating distributed feedback lasers. IEEE Journal of Quantum Electronics, 1999, 35(10): 1402–1411

    Article  Google Scholar 

  45. Peral E, Yariv A. Measurement and characterization of laser chirp of multiquantum-well distributed-feedback lasers. IEEE Photonics Technology Letters, 1999, 11(3): 307–309

    Article  Google Scholar 

  46. Hsu A, Chuang S, Fang W, Adams L, Nykolak G, Tanbun-Ek T. A wavelength-tunable curved waveguide DFB laser with an integrated modulator. IEEE Journal of Quantum Electronics, 1999, 35(6): 961–969

    Article  Google Scholar 

  47. Shams-Zadeh-Amiri A M, Li X, Huan W. Above-threshold analysis of second-order circular-grating DFB lasers. IEEE Journal of Quantum Electronics, 2000, 36(3): 259–267

    Article  Google Scholar 

  48. Fernandes C F. Hole-burning corrections in the stationary analysis of DFB laser diodes. Materials Science and Engineering B, 2000, 74 (1–3): 75–79

    Article  Google Scholar 

  49. Wang J Y, Cada M. Analysis and optimum design of distributed feedback lasers using coupled-power theory. IEEE Journal of Quantum Electronics, 2000, 36(1): 52–58

    Article  Google Scholar 

  50. Morrison G B, Cassidy D T, Bruce D M. Facet phases and subthreshold spectra of DFB lasers: spectral extraction, features, explanations and verification. IEEE Journal of Quantum Electronics, 2001, 37(6): 762–769

    Article  Google Scholar 

  51. Agrawal G P, Dutta N K. Semiconductor Lasers. 2nd ed. New York: Van Nostrand Reinhold, 1993

    Google Scholar 

  52. Adams M J, Wyatt R. An Introduction to Optical Waveguide. London: John Wiley & Sons, 1981

    Google Scholar 

  53. Nakano Y, Luo Y, Tada K. Facet reflection independent, single longitudinal mode oscillation in a GaAlAs/GaAs distributed feedback laser equipped with a gain-coupling mechanism. Applied Physics Letters, 1989, 55(16): 1606–1608

    Article  Google Scholar 

  54. Morthier G, Baets R. Modelling of distributed feedback lasers. In: Compound Semiconductor Device Modelling. London: Springer-Verlag, 1993, chapter 7, 119–148

    Chapter  Google Scholar 

  55. Vankwikelberge P, Morthier G, Baets R. CLADISS-a longitudinal multimode model for the analysis of the static, dynamic, and stochastic behavior of diode lasers with distributed feedback. IEEE Journal of Quantum Electronics, 1990, 26(10): 1728–1741

    Article  Google Scholar 

  56. Morthier G. An accurate rate-equation description for DFB lasers and some interesting solutions. IEEE Journal of Quantum Electronics, 1997, 33(2): 231–237

    Article  Google Scholar 

  57. Henry C H. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 1982, 18(2): 259–264

    Article  Google Scholar 

  58. Pan X, Olesen H, Tromborg B. Spectral linewidth of DFB lasers including the effects of spatial holeburning and nonuniform current injection. IEEE Photonics Technology Letters, 1990, 2(5): 312–315

    Article  Google Scholar 

  59. Henry C H. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. Journal of Lightwave Technology, 1986, 4(3): 288–297

    Article  Google Scholar 

  60. Sugimura A, Patzak E, Meissner P. Homogenous linewidth and linewidth enhancement factor for a GaAs semiconductor laser. Journal of Physics D: Applied Physics, 1986, 19(1): 7–16

    Article  Google Scholar 

  61. Kikuchi K, Okoshi T. Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor. IEEE Journal of Quantum Electronics, 1985, 21(11): 1814–1818

    Article  Google Scholar 

  62. Vahala K, Chiu L C, Margalit S, Yariv A. On the linewidth enhancement factor a in semiconductor injection lasers. Applied Physics Letters, 1983, 42(8): 631–633

    Article  Google Scholar 

  63. Fujise M. Spectral linewidth estimation of a 1.5 µm range InGaAsP/ InP distributed feedback laser. IEEE Journal of Quantum Electronics, 1986, 22(3): 458–462

    Article  Google Scholar 

  64. Kojima K, Kyuma K, Nakayama T. Analysis of spectral linewidth of distributed feedback laser diodes. Journal of Lightwave Technology, 1985, 3(5): 1048–1055

    Article  Google Scholar 

  65. Tromborg B, Olesen H, Pan X, Saito S. Transmission line description of optical feedback and injection locking for Fabry- Perot and DFB lasers. IEEE Journal of Quantum Electronics, 1987, 23(11): 1875–1889

    Article  Google Scholar 

  66. Makino T. Transfer-matrix formulation of spontaneous emission noise of DFB semiconductor lasers. Journal of Lightwave Technology, 1991, 9(1): 84–91

    Article  Google Scholar 

  67. Makino T, Glinski J. Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 1988, 24(8): 1507–1518

    Article  Google Scholar 

  68. Agrawal G P, Bobeck A. Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE Journal of Quantum Electronics, 1988, 24(12): 2407–2414

    Article  Google Scholar 

  69. Shahshahani F, Ahmadi V. Analysis of relative intensity noise in tapered grating QWS-DFB laser diodes by using three rate equations model. Solid-State Electronics, 2008, 52(6): 857–862

    Article  Google Scholar 

  70. Osinsky M, Polish M, Adams M J. Gain spectra of quarternary semiconductor. In: Proceedings of the IEEE I (Solid-State and Electron Devices). 1982, 129(6): 229–236

    Article  Google Scholar 

  71. Rabinovich W S, Feldman B J. Spatial hole burning effects in distributed feedback lasers. IEEE Journal of Quantum Electronics, 1989, 25(1): 20–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghadimi.

Additional information

Abbas Ghadimi received the B.Sc. degree in electronics from Amir Kabir University of Technology, Tehran, Iran, and the M.Sc. degree in electronics from the University of Guilan, Iran, and the Ph.D. degree in electronics from Islamic Azad University (IAU), Sciences and Research Branch, Tehran, Iran. He joined IAU, Lahijan Branch, Iran, in 2002, where he is currently Assistant Professor of Electronics. His current fields of interest are modeling and analysis of photodetectors, all-optical devices based nanostructures and nano electronic devices.

Alireza Ahadpour Shal received the B.Sc. degree in electronics from Amir Kabir University of Technology, Tehran, Iran, and the M.Sc. degree in electronics from Khaje Nasir Toosi University of Technology, Tehran, Iran. He joined Islamic Azad University (IAU), Lahijan Branch, Iran, in 2006, where he is currently Lecturer and a full-time Member of Academic Staff at Electronic Group. His fields of interests are optical communication systems and optical networking.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadimi, A., Ahadpour Shal, A. Analysis and modeling of ridge waveguide quarterly wavelength shifted distributed feedback laser with three rate equations. Front. Optoelectron. 8, 329–340 (2015). https://doi.org/10.1007/s12200-015-0476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-015-0476-0

Keywords

Navigation