Frontiers of Optoelectronics

, Volume 7, Issue 1, pp 37–45 | Cite as

Hydrazine processed Cu2SnS3 thin film and their application for photovoltaic devices

  • Jun Han
  • Ying Zhou
  • Yang Tian
  • Ziheng Huang
  • Xiaohua WangEmail author
  • Jie Zhong
  • Zhe Xia
  • Bo Yang
  • Haisheng Song
  • Jiang TangEmail author
Research Article


Copper tin sulfide (Cu2SnS3) was a potential earth abundant absorber material for photovoltaic device application. In this contribution, triclinic Cu2SnS3 film with phase pure composition and large grain size was fabricated from a hydrazine solution process using Cu, Sn and S as the precursors. Absorption measurement revealed this Cu2SnS3 film had a direct optical band gap of 0.88 eV, and Hall effect measurement indicated the film was p-type with hole mobility of 0.86 cm2/Vs. Finally Mo/Cu2SnS3/CdS/ZnO/AZO/Au was produced and the best device efficiency achieved was 0.78%. Also, this device showed improved device performance during ambient storage. This study laid some foundation for the further improvement of Cu2SnS3 solar cell.


copper tin sulfide (Cu2SnS3solar cell hydrazine solution process triclinic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhai Y T, Chen S, Yang J H, Xiang H J, Gong X G, Walsh A, Kang J, Wei S H. Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): a first-principles investigation. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(7): 075213–075216CrossRefGoogle Scholar
  2. 2.
    Bouaziz M, Ouerfelli J, Srivastava S K, Bernede J C, Amlouk M. Growth of Cu2SnS3 thin films by solid reaction under sulphur atmosphere. Vacuum, 2011, 85(8): 783–786CrossRefGoogle Scholar
  3. 3.
    Avellaneda D, Nair M T S, Nair P K. Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. Journal of the Electrochemical Society, 2010, 157(6): D346–D352CrossRefGoogle Scholar
  4. 4.
    Chen S Y, Walsh A, Gong X G, Wei S H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Advanced Materials, 2013, 25(11): 1522–1539CrossRefGoogle Scholar
  5. 5.
    Chen S Y, Wang LW, Walsh A, Gong X G, Wei S H. Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells. Applied Physics Letters, 2012, 101(22): 223901–223904CrossRefGoogle Scholar
  6. 6.
    Tiwari D, Chaudhuri T K, Shripathi T, Deshpande U, Rawat R. Non-toxic, earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from single metal-organic precursor solution. Solar Energy Materials and Solar Cells, 2013, 113: 165–170CrossRefGoogle Scholar
  7. 7.
    Chen Q M, Dou X M, Ni Y, Cheng S Y, Zhuang S L. Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by p-n junction interface modification. Journal of Colloid and Interface Science, 2012, 376(1): 327–330CrossRefGoogle Scholar
  8. 8.
    Berg D M, Djemour R, Gutay L, Zoppi G, Siebentritt S, Dale P J. Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films, 2012, 520(19): 6291–6294CrossRefGoogle Scholar
  9. 9.
    Koike J, Chino K, Aihara N, Araki H, Nakamura R, Jimbo K, Katagiri H. Cu2SnS3 thin-film solar cells from electroplated precursors. Japanese Journal of Applied Physics, 2012, 51(10): 10NC34-1–10NC34-3Google Scholar
  10. 10.
    Mitzi D B. Solution processing of chalcogenide semiconductors via dimensional reduction. Advanced Materials, 2009, 21(31): 3141–3158CrossRefGoogle Scholar
  11. 11.
    Mitzi D B, Kosbar L L, Murray C E, Copel M, Afzali A. Highmobility ultrathin semiconducting films prepared by spin coating. Nature, 2004, 428(6980): 299–303CrossRefGoogle Scholar
  12. 12.
    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Advanced Energy Materials., 2013, 3(1): 34–38CrossRefGoogle Scholar
  13. 13.
    Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with Earth-abundant liquid-processed absorber. Advanced Materials, 2010, 22(20): E156–E159CrossRefGoogle Scholar
  14. 14.
    Contreras M A, Romero M J, To B, Hasoon F, Noufi R, Ward S, Ramanathan K. Optimization of CBD CdS process in highefficiency Cu(In,Ga)Se2-based solar cells. Thin Solid Films, 2002, 403–404: 204–211CrossRefGoogle Scholar
  15. 15.
    Yang WB, Duan H S, Bob B, Zhou H P, Lei B, Chung C H, Li S H, Hou W W, Yang Y. Novel solution processing of high-efficiency Earth-abundant Cu2ZnSn(S,Se)4 solar cells. Advanced Materials, 2012, 24(47): 6323–6329CrossRefGoogle Scholar
  16. 16.
    Yuan M, Mitzi D B, Liu W, Kellock A J, Chey S J, Deline V R. Optimization of CIGS-based PV dedvice through antimony doping. Chemistry of Materials, 2010, 22(2): 285–287CrossRefGoogle Scholar
  17. 17.
    Cao Q, Gunawan O, Copel M, Reuter K B, Chey S J, Deline V R, Mitzi D B. Defects in Cu(In,Ga)Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Advanced Energy Materials, 2011, 1(5): 845–853CrossRefGoogle Scholar
  18. 18.
    Redinger A, Berg D M, Dale P J, Siebentritt S. The consequences of kesterite equilibria for efficient solar cells. Journal of the American Chemical Society, 2011, 133(10): 3320–3323CrossRefGoogle Scholar
  19. 19.
    Tang J, Brzozowski L, Barkhouse D A R, Wang X H, Debnath R, Wolowiec R, Palmiano E, Levina L, Pattantyus-Abraham A G, Jamakosmanovic D, Sargent E H. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano, 2010, 4(2): 869–878CrossRefGoogle Scholar
  20. 20.
    Tian Q W, Xu X F, Han L B, Tang M H, Zou R J, Chen Z G, Yu M H, Yang J M, Hu J Q. Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm, 2012, 14(11): 3847–3850CrossRefGoogle Scholar
  21. 21.
    Berg D M, Djemour R, Gütay L, Siebentritt S, Dale P J, Fontane X, Izquierdo-Roca V, Pérez-Rodriguez A. Raman analysis of monoclinic Cu2SnS3 thin films. Applied Physics Letters, 2012, 100(19): 192103–192104CrossRefGoogle Scholar
  22. 22.
    Fernandes P A, Salomé P M P, Cunha A F. A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D, Applied Physics, 2010, 43(21): 215403–215411CrossRefGoogle Scholar
  23. 23.
    Chino K, Koike J, Eguchi S, Araki H, Nakamura R, Jimbo K, Katagiri H. Preparation of Cu2SnS3 thin films by sulfurization of Cu/Sn stacked precursors. Japanese Journal of Applied Physics, 2012, 51(10): 10NC35-1–10NC35-4Google Scholar
  24. 24.
    Umehara M, Takeda Y, Motohiro T, Sakai T, Awano H, Maekawa R. Cu2Sn1 − xGexS3 (x = 0.17) thin-film solar cells with high conversion efficiency of 6.0%. Applied Physics Express, 2013, 6(4): 045501–045503CrossRefGoogle Scholar
  25. 25.
    Naumkin AV, Kraut-Vass A, Gaarenstroom S W, Powell C J. NIST X-ray Photoelectron Spectroscopy Database, Version 4.1. 2013Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jun Han
    • 1
  • Ying Zhou
    • 2
  • Yang Tian
    • 3
  • Ziheng Huang
    • 4
  • Xiaohua Wang
    • 1
    Email author
  • Jie Zhong
    • 2
  • Zhe Xia
    • 2
  • Bo Yang
    • 2
  • Haisheng Song
    • 2
  • Jiang Tang
    • 2
    Email author
  1. 1.School of ScienceChangchun University of Science and TechnologyChangchunChina
  2. 2.Wuhan National Laboratory for Optoelectronics (WNLO)Huazhong University of Science and TechnologyWuhanChina
  3. 3.Department of Environmental Science, College of Environmental SciencesMinzu University of ChinaBeijingChina
  4. 4.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations