Frontiers of Optoelectronics

, Volume 6, Issue 2, pp 134–145 | Cite as

Recent advances of optical imaging in animal stroke model

Review Article

Abstract

Stroke is a major health concern and an intensive research subject due that it is the major cause of death and the leading cause of disability worldwide. The past three decades of clinical disappointments in treating stroke must compel us to rethink our strategy. New effective protocol for stroke could greatly benefit from the advances in optical imaging technologies. This review focuses on the latest advance of applications of three optical imaging techniques in animal model of stroke, such as photoacoustic (PA) imaging, laser speckle contrast imaging (LSCI) and two-photon microscopy (TPM). The potential roles of those techniques in the future of stroke management are also discussed.

Keywords

optical imaging photoacoustic (PA) imaging laser speckle contrast imaging (LSCI) two-photon microscopy (TPM) animal model stroke 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sims N R, Muyderman H. Mitochondria, oxidative metabolism and cell death in stroke. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2010, 1802(1): 80–91CrossRefGoogle Scholar
  2. 2.
    Brown D L, Boden-Albala B, Langa K M, Lisabeth L D, Fair M, Smith M A, Sacco R L, Morgenstern L B. Projected costs of ischemic stroke in the United States. Neurology, 2006, 67(8): 1390–1395CrossRefGoogle Scholar
  3. 3.
    Joshi S, Agarwal S. The proposed role of optical sensing in translational stroke research. Annals of the New York Academy of Sciences, 2010, 1199(1): 149–157CrossRefGoogle Scholar
  4. 4.
    Li C, Wang L V. Photoacoustic tomography and sensing in biomedicine. Physics in Medicine and Biology, 2009, 54(19): R59–R97CrossRefGoogle Scholar
  5. 5.
    Anna Devor S S, Srinivasan V J, Yaseen M A, Nizar K, Saisan P A, Tian P, Dale A M, Vinogradov S A, Maria Angela Franceschini D A B. Frontiers in optical imaging of cerebral blood flow and metabolism. Journal of Cerebral Blood Flow and Metabolism, 2012, 32: 1259–1276CrossRefGoogle Scholar
  6. 6.
    Zhang S, Murphy T H. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biology, 2007, 5(5): e119CrossRefGoogle Scholar
  7. 7.
    Grant P E, Roche-Labarbe N, Surova A, Themelis G, Selb J, Warren E K, Krishnamoorthy K S, Boas D A, Franceschini M A. Increased cerebral blood volume and oxygen consumption in neonatal brain injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29 (10): 1704–1713CrossRefGoogle Scholar
  8. 8.
    Mesquita R C, Durduran T, Yu G, Buckley E M, Kim M N, Zhou C, Choe R, Sunar U, Yodh A G. Direct measurement of tissue blood flow and metabolism with diffuse optics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1955): 4390–4406MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Obrig H, Steinbrink J. Non-invasive optical imaging of stroke. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1955): 4470–4494CrossRefGoogle Scholar
  10. 10.
    Wilson K, Homan K, Emelianov S. Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nature Communications, 2012, 3: 618CrossRefGoogle Scholar
  11. 11.
    Wang L V. Tutorial on photoacoustic microscopy and computed tomography. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(1): 171–179CrossRefGoogle Scholar
  12. 12.
    Wang L V. Multiscale photoacoustic microscopy and computed tomography. Nature Photonics, 2009, 3(9): 503–509CrossRefGoogle Scholar
  13. 13.
    Wang L V. Prospects of photoacoustic tomography. Medical Physics, 2008, 35(12): 5758–5767CrossRefGoogle Scholar
  14. 14.
    Hu S, Gonzales E, Soetikno B, Gong E, Yan P, Maslov K, Lee J M, Wang L V. Optical-resolution photoacoustic microscopy of ischemic stroke. In: Proceedings of SPIE, Photons Plus Ultrasound: Imaging and Sensing. 2011, 7899: 789906CrossRefGoogle Scholar
  15. 15.
    Soetikno B, Hu S, Gonzales E, Zhong Q, Maslov K, Lee J M, Wang L V. Vessel segmentation analysis of ischemic stroke images acquired with photoacoustic microscopy. In: Proceedings of SPIE, Photons Plus Ultrasound: Imaging and Sensing. 2012, 8233: 822345CrossRefGoogle Scholar
  16. 16.
    Deng Z L, Wang Z, Yang X Q, Luo Q M, Gong H. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy. Journal of Biomedical Optics, 2012, 17(8): 081415CrossRefGoogle Scholar
  17. 17.
    Ermilov S A, Khamapirad T, Conjusteau A, Leonard MH, Lacewell R, Mehta K, Miller T, Oraevsky A A. Laser optoacoustic imaging system for detection of breast cancer. Journal of Biomedical Optics, 2009, 14(2): 024007CrossRefGoogle Scholar
  18. 18.
    Esenaliev R O, Karabutov A A, Oraevsky A A. Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 981–988CrossRefGoogle Scholar
  19. 19.
    Ku G, Wang L V. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Optics Letters, 2005, 30(5): 507–509CrossRefGoogle Scholar
  20. 20.
    Hamilton J D, O’Donnell M. High frequency ultrasound imaging with optical arrays. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998, 45(1): 216–235CrossRefGoogle Scholar
  21. 21.
    Payne B P, Venugopalan V, Mikić B B, Nishioka N S. Optoacoustic tomography using time-resolved interferometric detection of surface displacement. Journal of Biomedical Optics, 2003, 8(2): 273–280CrossRefGoogle Scholar
  22. 22.
    Carp S A, Guerra A, Duque S Q, Venugopalan V. Optoacoustic imaging using interferometric measurement of surface displacement. Applied Physics Letters, 2004, 85(23): 5772–5774CrossRefGoogle Scholar
  23. 23.
    Carp S A, Venugopalan V. Optoacoustic imaging based on the interferometric measurement of surface displacement. Journal of Biomedical Optics, 1999, 12(6): 064001CrossRefGoogle Scholar
  24. 24.
    Xu Y, Wang L V. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2006, 53(3): 542–548CrossRefGoogle Scholar
  25. 25.
    Yang X M, Wang L V. Monkey brain cortex imaging by photoacoustic tomography. Journal of Biomedical Optics, 2008, 13(4): 044009CrossRefGoogle Scholar
  26. 26.
    Yao J, Wang L V. Photoacoustic tomography: fundamentals, advances and prospects. Contrast Media & Molecular Imaging, 2011, 6(5): 332–345CrossRefGoogle Scholar
  27. 27.
    Dunn A K. Laser speckle contrast imaging of cerebral blood flow. Annals of Biomedical Engineering, 2012, 40(2): 367–377CrossRefGoogle Scholar
  28. 28.
    Song L, Elson D S. Effect of signal intensity and camera quantization on laser speckle contrast analysis. Biomedical Optics Express, 2013, 4(1): 89–104CrossRefGoogle Scholar
  29. 29.
    He H, Tang Y, Zhou F, Wang J, Luo Q, Li P. Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging. Optics Letters, 2012, 37(18): 3774–3776CrossRefGoogle Scholar
  30. 30.
    Zhang H Y, Li P, Feng N, Qiu J, Li B, Luo W, Luo Q. Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow. Optics Express, 2012, 20(1): 508–517CrossRefGoogle Scholar
  31. 31.
    Song L P, Elson D S. Dual-wavelength endoscopic laser speckle contrast imaging system for indicating tissue blood flow and oxygenation. In: Proceedings of SPIE, Dynamics and Fluctuations in Biomedical Photonics IX. 2012, 8222: 822209CrossRefGoogle Scholar
  32. 32.
    Lu H Y, Miao P, Liu Q, Li Y, Tong S B. Dual-modal (OIS/LSCI) imager of cerebral cortex in freely moving animals. In: Proceedings of SPIE, 10th International Conference on Photonics and Imaging in Biology and Medicine (PIBM 2011). 2012, 8329: 83290PCrossRefGoogle Scholar
  33. 33.
    Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics. Journal of Biomedical Optics, 2010, 15(1): 011109CrossRefGoogle Scholar
  34. 34.
    Parthasarathy A B, Kazmi S M, Dunn A K. Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomedical Optics Express, 2010, 1(1): 246–259CrossRefGoogle Scholar
  35. 35.
    Levy H, Ringuette D, Levi O. Rapid monitoring of cerebral ischemia dynamics using laser-based optical imaging of blood oxygenation and flow. Biomedical Optics Express, 2012, 3(4): 777–791CrossRefGoogle Scholar
  36. 36.
    Qin J, Shi L, Dziennis S, Reif R, Wang R K. Fast synchronized dualwavelength laser speckle imaging system for monitoring hemodynamic changes in a stroke mouse model. Optics Letters, 2012, 37 (19): 4005–4007CrossRefGoogle Scholar
  37. 37.
    Wang Z, Luo W, Zhou F, Li P, Luo Q. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex. Journal of Biomedical Optics, 2012, 17(12): 125001CrossRefGoogle Scholar
  38. 38.
    Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy. Science (New York, NY), 1990, 248 (4951): 73–76CrossRefGoogle Scholar
  39. 39.
    Denk W, Svoboda K. Photon upmanship: techreview why multiphoton imaging is more than a gimmick. Neuron, 1997, 18: 351–357CrossRefGoogle Scholar
  40. 40.
    Shih A Y, Driscoll J D, Drew P J, Nishimura N, Schaffer C B, Kleinfeld D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. Journal of Cerebral Blood Flow and Metabolism, 2012, 32(7): 1277–1309CrossRefGoogle Scholar
  41. 41.
    Ginsberg M D, Busto R. Rodent models of cerebral ischemia. Stroke, 1989, 20(12): 1627–1642CrossRefGoogle Scholar
  42. 42.
    Kövari E, Gold G, Herrmann F R, Canuto A, Hof P R, Bouras C, Giannakopoulos P. Cortical microinfarcts and demyelination affect cognition in cases at high risk for dementia. Neurology, 2007, 68 (12): 927–931CrossRefGoogle Scholar
  43. 43.
    Suter O C, Sunthorn T, Kraftsik R, Straubel J, Darekar P, Khalili K, Miklossy J. Cerebral hypoperfusion generates cortical watershed microinfarcts in Alzheimer disease. Stroke, 2002, 33(8): 1986–1992CrossRefGoogle Scholar
  44. 44.
    Hua R, Walz W. The need for animal models in small-vessel brain disease. Critical Reviews in Neurobiology, 2006, 18(1–2): 5–11CrossRefGoogle Scholar
  45. 45.
    Mohajerani M H, Aminoltejari K, Murphy T H. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(22): E183–E191CrossRefGoogle Scholar
  46. 46.
    Nishimura N, Schaffer C B, Friedman B, Lyden P D, Kleinfeld D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 365–370CrossRefGoogle Scholar
  47. 47.
    Nishimura N, Schaffer C B, Friedman B, Tsai P S, Lyden P D, Kleinfeld D. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke. Nature Methods, 2006, 3(2): 99–108CrossRefGoogle Scholar
  48. 48.
    Schaffer C B, Friedman B, Nishimura N, Schroeder L F, Tsai P S, Ebner F F, Lyden P D, Kleinfeld D. Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. PLoS Biology, 2006, 4(2): e22CrossRefGoogle Scholar
  49. 49.
    Watson B D, Dietrich W D, Busto R, Wachtel M S, Ginsberg M D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals of Neurology, 1985, 17(5): 497–504CrossRefGoogle Scholar
  50. 50.
    Brown C E, Li P, Boyd J D, Delaney K R, Murphy T H. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. The Journal of Neuroscience, 2007, 27(15): 4101–4109CrossRefGoogle Scholar
  51. 51.
    Mostany R, Portera-Cailliau C. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. The Journal of Neuroscience, 2011, 31(5): 1734–1738CrossRefGoogle Scholar
  52. 52.
    Zhang S, Boyd J, Delaney K, Murphy T H. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. The Journal of Neuroscience, 2005, 25(22): 5333–5338CrossRefGoogle Scholar
  53. 53.
    Drew P J, Shih A Y, Driscoll J D, Knutsen P M, Blinder P, Davalos D, Akassoglou K, Tsai P S, Kleinfeld D. Chronic optical access through a polished and reinforced thinned skull. Nature Methods, 2010, 7(12): 981–984CrossRefGoogle Scholar
  54. 54.
    Davalos D, Grutzendler J, Yang G, Kim J V, Zuo Y, Jung S, Littman D R, Dustin ML, Gan WB. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neuroscience, 2005, 8(6): 752–758CrossRefGoogle Scholar
  55. 55.
    Sigler A, Murphy T H. In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke. Stroke, 2010, 41 (10 Suppl): S117–S123CrossRefGoogle Scholar
  56. 56.
    Dijkhuizen R M, Ren J M, Mandeville J B, Wu O, Ozdag F M, Moskowitz M A, Rosen B R, Finklestein S P. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22): 12766–12771CrossRefGoogle Scholar
  57. 57.
    Li P, Murphy T H. Two-photon imaging during prolonged middle cerebral artery occlusion in mice reveals recovery of dendritic structure after reperfusion. The Journal of Neuroscience, 2008, 28(46): 11970–11979CrossRefGoogle Scholar
  58. 58.
    Murphy T H, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews. Neuroscience, 2009, 10(12): 861–872Google Scholar
  59. 59.
    Brown C E, Aminoltejari K, Erb H, Winship I R, Murphy T H. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. The Journal of Neuroscience, 2009, 29(6): 1719–1734CrossRefGoogle Scholar
  60. 60.
    Winship I R, Murphy T H. Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network. Neuroscientist, 2009, 15(5): 507–524CrossRefGoogle Scholar
  61. 61.
    Carmichael S T. Plasticity of cortical projections after stroke. Neuroscientist, 2003, 9(1): 64–75CrossRefGoogle Scholar
  62. 62.
    Carmichael S T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Annals of Neurology, 2006, 59(5): 735–742CrossRefGoogle Scholar
  63. 63.
    Coq J O, Xerri C. Acute reorganization of the forepaw representation in the rat SI cortex after focal cortical injury: neuroprotective effects of piracetam treatment. European Journal of Neuroscience, 1999, 11(8): 2597–2608CrossRefGoogle Scholar
  64. 64.
    Dancause N, Barbay S, Frost S B, Plautz E J, Chen D, Zoubina E V, Stowe AM, Nudo R J. Extensive cortical rewiring after brain injury. The Journal of Neuroscience, 2005, 25(44): 10167–10179CrossRefGoogle Scholar
  65. 65.
    Nudo R J, Milliken G W. Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. Journal of Neurophysiology, 1996, 75(5): 2144–2149Google Scholar
  66. 66.
    Rouiller E M, Yu X H, Moret V, Tempini A, Wiesendanger M, Liang F. Dexterity in adult monkeys following early lesion of the motor cortical hand area: the role of cortex adjacent to the lesion. European Journal of Neuroscience, 1998, 10(2): 729–740CrossRefGoogle Scholar
  67. 67.
    Castro-Alamancos M A, Borrel J. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience, 1995, 68(3): 793–805CrossRefGoogle Scholar
  68. 68.
    Dijkhuizen R M, Singhal A B, Mandeville J B, Wu O, Halpern E F, Finklestein S P, Rosen B R, Lo E H. Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study. The Journal of Neuroscience, 2003, 23(2): 510–517Google Scholar
  69. 69.
    Rossini P M, Altamura C, Ferreri F, Melgari J M, Tecchio F, Tombini M, Pasqualetti P, Vernieri F. Neuroimaging experimental studies on brain plasticity in recovery from stroke. Europa Medicophysica, 2007, 43(2): 241–254Google Scholar
  70. 70.
    Schaechter J D, Moore C I, Connell B D, Rosen B R, Dijkhuizen R M. Structural and functional plasticity in the somatosensory cortex of chronic stroke patients. Brain, 2006, 129(10): 2722–2733CrossRefGoogle Scholar
  71. 71.
    Johnston D G, Denizet M, Mostany R, Portera-Cailliau C. Chronic in vivo imaging shows no evidence of dendritic plasticity or functional remapping in the contralesional cortex after stroke. Cerebral Cortex, 2012Google Scholar
  72. 72.
    Kleinfeld D, Mitra P P, Helmchen F, Denk W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(26): 15741–15746CrossRefGoogle Scholar
  73. 73.
    Devor A, Tian P, Nishimura N, Teng I C, Hillman E M C, Narayanan S N, Ulbert I, Boas D A, Kleinfeld D, Dale A M. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. The Journal of Neuroscience, 2007, 27(16): 4452–4459CrossRefGoogle Scholar
  74. 74.
    Tian P, Teng I C, May L D, Kurz R, Lu K, Scadeng M, Hillman EM C, De Crespigny A J, D’Arceuil H E, Mandeville J B, Marota J J, Rosen B R, Liu T T, Boas D A, Buxton R B, Dale A M, Devor A. Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(34): 15246–15251CrossRefGoogle Scholar
  75. 75.
    Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer C B, Xu C. Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express, 2009, 17(16): 13354–13364CrossRefGoogle Scholar
  76. 76.
    Kirchhoff F, Debarbieux F, Kronland-martinet C, Cojocaru G, Popa-Wagner A. Combined two-photon laser-scanning microscopy and spectral microCT X-ray imaging to characterize the cellular signature and evolution of microstroke foci. Romanian Journal of Morphology and Embryology, 2012, 53(3 Suppl): 671–675Google Scholar
  77. 77.
    Feng G, Mellor R H, Bernstein M, Keller-Peck C, Nguyen Q T, Wallace M, Nerbonne J M, Lichtman J W, Sanes J R. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 2000, 28(1): 41–51CrossRefGoogle Scholar
  78. 78.
    Helmchen F, Fee M S, Tank D W, Denk W. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron, 2001, 31(6): 903–912CrossRefGoogle Scholar
  79. 79.
    Piyawattanametha W, Cocker E D, Burns L D, Barretto R P J, Jung J C, Ra H, Solgaard O, Schnitzer M J. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. Optics Letters, 2009, 34(15): 2309–2311CrossRefGoogle Scholar
  80. 80.
    Risher W C, Ard D, Yuan J, Kirov S A. Recurrent spontaneous spreading depolarizations facilitate acute dendritic injury in the ischemic penumbra. The Journal of Neuroscience, 2010, 30(29): 9859–9868CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.MoE Key Laboratory for Biomedical Photonics, Department of Biomedical EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations