Skip to main content
Log in

Polarization properties in helical metamaterials

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

In the last few years, there has been growing interest in the research of helical metamaterials due to the advantages of giant circular dichroism, broad operation bands, and compact structures. However, most of the researches were in the cases of single-, circular-helical metamaterials, and normal incidences. In this paper, we reviewed recent simulation works in the helical metamaterials with the finite-difference time-domain (FDTD) method, which mainly included the optical performances of double-, three-, four-helical metamaterials, performances of elliptical-helical metamaterials, and the polarization properties under the condition of oblique incidences. The results demonstrate that the double-helical metamaterials have operation bands more than 50%, which is broader than those of the single-helical structures. But both of them have low signal-to-noise ratios about 10 dB. The three- and four-helical metamaterials have significant improvement in overall performance. For ellipticalhelixes, simulation results suggest that the transmitted light can have elliptical polarization states. On the condition of oblique incidences, the novel property of tunable polarization states occurred in the helical metamaterials, which could have much broader potential applications such as tunable optical polarizers, tunable beam splitters, and tunable optical attenuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969

    Article  Google Scholar 

  2. Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(1Pt2): 016623

    Article  Google Scholar 

  3. Leonhardt U. Optical conformal mapping. Science, 2006, 312(5781): 1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  4. Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780–1782

    Article  MathSciNet  MATH  Google Scholar 

  5. Monat C, Grillet C, Corcoran B, Moss D J, Eggleton B J, White T P, Krauss T F. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics. Optics Express, 2010, 18(7): 6831–6840

    Article  Google Scholar 

  6. Alu A, Engheta N. Guided modes in a waveguide filled with a pair of singlenegative (SNG) double-negative (DNG), and/or doublepositive (DPS) layers. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(1): 199–210

    Article  Google Scholar 

  7. Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q. Direct measurement of propagation losses in silver nanowires. Optics Letters, 2010, 35(8): 1160–1162

    Article  Google Scholar 

  8. Wang P, Gu F, Zhang L, Tong L. Polymer microfiber rings for highsensitivity optical humidity sensing. Applied Optics, 2011, 50(31): G7–G10

    Article  Google Scholar 

  9. Meng C, Xiao Y, Wang P, Zhang L, Liu Y, Tong L. Quantum-dotdoped polymer nanofibers for optical sensing. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(33): 3770–3774

    Google Scholar 

  10. Wu D K C, Kuhlmey B T, Eggleton B J. Ultrasensitive photonic crystal fiber refractive index sensor. Optics Letters, 2009, 34(3): 322–324

    Article  Google Scholar 

  11. WiltshireMC K, Pendry J B, Young I R, Larkman D J, Gilderdale D J, Hajnal J V. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 2001, 291(5505): 849–851

    Article  Google Scholar 

  12. Wang X, Venugopal G, Zeng J, Chen Y, Lee D H, Litchinitser N M, Cartwright A N. Optical fiber metamagnetics. Optics Express, 2011, 19(21): 19813–19821

    Article  Google Scholar 

  13. Liu H, Cao J X,. Zhu N, Liu N, Ameling R, Giessen H. Lagrange model for the chiral optical properties of stereometamaterials. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(24): 241403

    Article  Google Scholar 

  14. Li T Q, Liu H, Li T, Wang S M, Wang F M, Wu R X, Chen P, Zhu S N, Zhang X. Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial. Applied Physics Letters, 2008, 92(13): 131111

    Article  Google Scholar 

  15. Liu N, Liu H, Zhu S N, Giessen H. Stereometamaterials. Nature Photonics, 2009, 3: 157–162

    Article  Google Scholar 

  16. Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(7): 073101

    Article  Google Scholar 

  17. Gansel J K, Thiel M, Rill M S, Decker M, Bade K, Saile V, von Freymann G, Linden S, Wegener M. Gold helix photonic metamaterial as broadband circular polarizer. Science, 2009, 325(5947): 1513–1515

    Article  Google Scholar 

  18. Gansel J K, Wegener M, Burger S, Linden S. Gold helix photonic metamaterials: a numerical parameter study. Optics Express, 2010, 18(2): 1059–1069

    Article  Google Scholar 

  19. Gansel J K, Latzel M, Frölich A, Kaschke J, Thiel M, Wegener M. Tapered gold-helix metamaterials as improved circular polarizers. Applied Physics Letters, 2012, 100(10): 101109

    Article  Google Scholar 

  20. Wu C, Li H Q, Wei Z Y, Yu X T, Chan C T. Theory and experimental realization of negative refraction in a metallic helix array. Physical Review Letters, 2010, 105(24): 247401

    Article  Google Scholar 

  21. Wu C, Li H Q, Yu X, Li F, Chen H. Metallic helix array as a broadband wave plate. Physical Review Letters, 2011, 107(17): 177401

    Article  Google Scholar 

  22. Lub J, van de Witte P, Doornkamp C, Vogels J P A, Wegh R T. Stable photopatterned cholesteric layers made by photoisomerization and subsequent photopolymerization for use as color filters in liquid-crystal displays. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(17): 1420–1425

    Article  Google Scholar 

  23. De Filpo G, Nicoletta F P, Chidichimo G. Cholesteric emulsions for colored displays. Advanced Materials (Deerfield Beach, Fla.), 2005, 17(9): 1150–1152

    Article  Google Scholar 

  24. Yoshioka T, Ogata T, Nonaka T, Moritsugu M, Kim S N, Kurihara S. Reversible-photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure. Advanced Materials (Deerfield Beach, Fla.), 2005, 17(10): 1226–1229

    Article  Google Scholar 

  25. Loksztejn A, Dzwolak W. Vortex-induced formation of insulin amyloid superstructures probed by time-lapse atomic force microscopy and circular dichroism spectroscopy. Journal of Molecular Biology, 2010, 395(3): 643–655

    Article  Google Scholar 

  26. Claborn K, Puklin-Faucher E, Kurimoto M, Kaminsky W, Kahr B. Circular dichroism imaging microscopy: application to enantiomorphous twinning in biaxial crystals of 1,8-dihydroxyanthraquinone. Journal of the American Chemical Society, 2003, 125(48): 14825–14831

    Article  Google Scholar 

  27. Hecht E. Optics. 4th ed. San Francisco: Addison-Wesley, 2002, 357–358

    Google Scholar 

  28. Hikmet R A M, Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature, 1998, 392(6675): 476–479

    Article  Google Scholar 

  29. Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Materials, 2006, 5(5): 361–364

    Article  Google Scholar 

  30. Xiao JM, Cao H, He WL, Ma Z, Geng J, Wang L, Wang G, Yang H. Wide-band reflective polarizers from cholesteric liquid crystals with stable optical properties. Journal of Applied Polymer Science, 2007, 105(5): 2973–2977

    Article  Google Scholar 

  31. Ha N Y, Ohtsuka Y, Jeong S M, Nishimura S, Suzaki G, Takanishi Y, Ishikawa K, Takezoe H. Fabrication of a simultaneous red-greenblue reflector using single-pitched cholesteric liquid crystals. Nature Materials, 2008, 7(1): 43–47

    Article  Google Scholar 

  32. Yang Z Y, Zhao M, Lu Y F. Similar structures, different characteristics: optical performances of circular polarizers with single- and double-helical metamaterials. Journal of Lightwave Technology, 2010, 28(21): 3055–3061

    Google Scholar 

  33. Yang Z Y, Zhao M, Lu P X, Lu Y F. Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures. Optics Letters, 2010, 35(15): 2588–2590

    Article  Google Scholar 

  34. Yang Z Y, Zhao M, Lu P X. How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials? Optics Express, 2011, 19(5): 4255–4260

    Article  Google Scholar 

  35. Wu L, Yang Z, Zhao M, Yu Y, Li S, Zhang Q, Yuan X. Polarization characteristics of the metallic structure with elliptically helical metamaterials. Optics Express, 2011, 19(18): 17539–17545

    Article  Google Scholar 

  36. Wu L, Yang Z, Zhao M, Zhang P, Lu Z, Yu Y, Li S, Yuan X. What makes single-helical metamaterials generate “pure” circularly polarized light? Optics Express, 2012, 20(2): 1552–1560

    Article  Google Scholar 

  37. Berenger J P. A perfectly matched layer for the absorption of electromagnetic-waves. Journal of Computational Physics, 1994, 114(2): 185–200

    Article  MathSciNet  MATH  Google Scholar 

  38. Harms P, Mittra R, Ko W. Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Transactions on Antennas and Propagation, 1994, 42(9): 1317–1324

    Article  Google Scholar 

  39. Rakic A D, Djurisic A B, Elazar J M, Majewski M L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Applied Optics, 1998, 37(22): 5271–5283

    Article  Google Scholar 

  40. Liu H, Liu Y M, Li T, Wang S M, Zhu S N, Zhang X. Coupled magnetic plasmons in metamaterials. Physica Status Solidi B, 2009, 246(7): 1397–1406

    Article  Google Scholar 

  41. Liu H, Li T, Wang S M, Zhu S N. Hybridization effect in coupled metamaterials. Frontiers of Physics in China, 2010, 5(3): 277–290

    Article  Google Scholar 

  42. Rukhlenko I D, Dissanayake C, Premaratne M. Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere. Optics Letters, 2010, 35(13): 2221–2223

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Zhang, P., Xie, P. et al. Polarization properties in helical metamaterials. Front. Optoelectron. 5, 248–255 (2012). https://doi.org/10.1007/s12200-012-0267-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-012-0267-9

Keywords

Navigation