Skip to main content
Log in

A simple experimental scheme for M-QAM optical signals generation

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

A simple scheme to generate optical quadrature amplitude modulation (QAM) signals is proposed based on different types of delay interferometers (DIs). The simulated results show that 16QAM, 64QAM and 256 QAM optical signals can be generated by 2×2, 3×3 and 4×4 DI, respectively, and the outputs of the proposed scheme are similar to those of the conventional schemes. The operation principle is discussed and the transmission properties of the square 16QAM as well as 64QAM signals are analyzed and compared with common approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gnauck A H, Winzer P J, Konczykowska A, Jorge F, Dupuy J Y, Riet M, Charlet G, Zhu B, Peckham D W. Generation and transmission of 21.4-Gbaud PDM 64-QAM using a novel highpower DAC driving a single I/Q modulator. Journal of Lightwave Technology, 2012, 30(4): 532–536

    Article  Google Scholar 

  2. Lu G W, Sakamoto T, Kawanishi T. Rectangular QPSK for generation of optical eight-ary phase-shift keying. Optics Express, 2011, 19 (19): 18479–18485

    Article  Google Scholar 

  3. Bakhtiari Z, Wang J, Wu X X, Yang J Y, Nuccio S R, Hellwarth R W, Willner A E. Demonstration of 10–40-Gbaud baud-rate-tunable optical generation of 16-QAM from a QPSK signal using a variable DGD element. In: 2011 Conference on Lasers and Electro-Optics (CLEO), CThX5

  4. Seimetz M, Noelle M, Patzak E. Optical systems with high-order DPSK and star QAM modulation based on interferometric direct detection. Journal of Lightwave Technology, 2007, 25(6): 1515–1529

    Article  Google Scholar 

  5. Kobayashi1 T, Sano A, Masuda H, Ishihara K, Yoshida E, Miyamoto Y, Yamazaki H, Yamada T. 160-Gb/s polarization-multiplexed 16-QAM long-haul transmission over 3123 km using digital coherent receiver with digital PLL based frequency offset compensator. In: 2010 Conference on OFC/NFOEC. 2010, OTuD1

  6. Seimetz M. Performance of coherent optical square 16-QAMsystems based on IQ-transmitters and homodyne receivers with digital phase estimation. In: Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. 2006, 10

  7. Gnauck A H, Winzer P J, Chandrasekhar S, Liu X, Zhu B, Peckham D W. 10 × 224-Gb/s WDM transmission of 28-Gbaud PDM16-QAM on a 50-GHz grid over 1200 km of fiber. In: 2010 Conference on OFC/NFOEC. 2010, PDPB8

  8. Yu J J. Zhou X, Gupta S, Huang YK, Huang M F. A novel scheme to generate 112.8-Gb/s PM-RZ-64QAM optical signal. IEEE Photonics Technology Letters, 2010, 22(2): 115–117

    Article  Google Scholar 

  9. Yu J J, Zhou X, Huang Y K, Gupta S, Huang M F, Wang T. 112.8-Gb/s PM-RZ-64QAM optical signal generation and transmission on a 12.5 GHz WDM grid. In: 2010 Conference on OFC/NFOEC. 2010, OThM1

  10. Nakazawa M, Okamoto S, Omiya T, Kasai K, Yoshida M. 256 QAM (64 Gbit/s) Coherent Optical Transmission over 160 km with an Optical Bandwidth of 5.4 GHz. IEEE Photonics Techonology Letters, 2010: 185–187

  11. Yamazaki H, Yamada T, Goh T, Sakamaki Y, Kaneko A. 64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators for 100-Gb/s applications. In: 35th European Conference on Optical Communication (ECOC), 2009, 1–4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, L., Yu, Y., Lou, F. et al. A simple experimental scheme for M-QAM optical signals generation. Front. Optoelectron. 5, 200–207 (2012). https://doi.org/10.1007/s12200-012-0263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-012-0263-0

Keywords

Navigation