Skip to main content
Log in

Direct band gap luminescence from Ge on Si pin diodes

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Germanium (Ge) pin photodiodes show clear direct band gap emission at room temperature, as grown on bulk silicon in both photoluminescence (PL) and electroluminescence (EL). PL stems from the top contact layer with highly doped Ge because of strong absorption of visible laser light excitation (532 nm). EL stems from the recombination of injected carriers in the undoped intrinsic layer. The difference in peak positions for PL (0.73 eV) and EL (0.80 eV) is explained by band gap narrowing from high doping in n+-top layer. A superlinear increase of EL with current density is explained by a rising ratio of direct/indirect electron densities when quasi Fermi energy level rises into the conduction band. An analytical model for the direct/indirect electron density ratio is given using simplifying assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klingenstein W, Schweizer H. Direct gap recombination in germanium at high excitation level and low temperature. Solid-State Electronics, 1978, 21(11–12): 1371–1374

    Article  Google Scholar 

  2. Sun X C, Liu J F, Kimerling L C, Michel J. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Optics Letters, 2009, 34(8): 1198–1200

    Article  Google Scholar 

  3. Cheng S L, Lu J, Shambat G, Yu H Y, Saraswat K, Vuckovic J, Nishi Y. Room temperature 16 μm electroluminescence from Ge light emitting diode on Si substrate. Optics Express, 2009, 17(12): 10019–10024

    Article  Google Scholar 

  4. Liu J F, Sun X C, Kimerling L C, Michel J. Direct-gap optical gain of Ge on Si at room temperature. Optics Letters, 2010, 34(11): 1738–1740

    Article  Google Scholar 

  5. Liu J F, Sun X C, Camacho-Aguilera R, Kimerling L C, Michel J. Ge-on-Si laser operating at room temperature. Optics Letters, 2010, 35(5): 679–681

    Article  Google Scholar 

  6. Jalali B, Fathpour S. Silicon photonics. Journal of Lightwave Technology, 2006, 24(12): 4600–4615

    Article  Google Scholar 

  7. Soref R. Silicon photonics: a review of recent literature. Silicon, 2010, 2(1): 1–6

    Article  Google Scholar 

  8. Oehme M, Werner J, Kaschel M, Kirfel O, Kasper E. Germanium waveguide photodetectors integrated on silicon with MBE. Thin Solid Films, 2008, 517(1): 137–139

    Article  Google Scholar 

  9. Klinger S, Berroth M, Kaschel M, Oehme M, Kasper E. Ge-on-Si pi-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photonics Technology Letters, 2009, 21(13): 920–922

    Article  Google Scholar 

  10. Oehme M, Kaschel M, Werner J, Kirfel O, Kasper E, Schulze J. Germanium on silicon photodetectors with broad spectral range. Journal of the Electrochemical Society, 2010, 157(2): H144

    Article  Google Scholar 

  11. Schmid M, Oehme M, Kaschel M, Werner J, Kasper E, Schulze J. Franz-Keldysh effect in germanium p-i-n photodetectors on silicon. In: 7th IEEE International Conference on Group IV Photonics (GFP). 2010, 329–331

  12. Oehme M, Werner J, Kasper E. Molecular beam epitaxy of highly antimony doped germanium on silicon. Journal of Crystal Growth, 2008, 310(21): 4531–4534

    Article  Google Scholar 

  13. Kasper E, Oehme M, Lupaca-Schomber J. High Ge content SiGe alloys: doping and contact formation. ECS Transactions, 2008, 16(10): 893–904

    Article  Google Scholar 

  14. Kittler M, Aguirov T. ECS 2010, post-deadline talk

  15. Klaassen D B M, Slotboom J W, de Graaff H C. Unified apparent bandgap narrowing in n- and p-type silicon. Solid-State Electronics, 1992, 35(2): 125–129

    Article  Google Scholar 

  16. Pankove J I, Aigrain P. Optical absorption of arsenic-doped degenerate germanium. Physical Review, 1962, 126(3): 956–962

    Article  Google Scholar 

  17. Jain S C, Roulston D J. A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1 − x strained layers. Solid-State Electronics, 1991, 34(5): 453–465

    Article  Google Scholar 

  18. Burstein E. Anomalous optical absorption limit in InSb. Physical Review, 1954, 93(3): 632–633

    Article  Google Scholar 

  19. Kasper E, Oehme M, Arguirov T, Werner J, Kittler M, Schulze J. Room temperature direct band gap emission from Ge p-i-n heterojunction photodiodes. In: 7th IEEE International Conference on Group IV Photonics Late paper, 2010

  20. Kasper E, Paul D J. Silicon Integrated Quantum Circuits. Berlin: Springer Verlag, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kasper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasper, E., Oehme, M., Werner, J. et al. Direct band gap luminescence from Ge on Si pin diodes. Front. Optoelectron. 5, 256–260 (2012). https://doi.org/10.1007/s12200-012-0235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-012-0235-4

Keywords

Navigation