Skip to main content
Log in

Research on VO x uncooled infrared bolometer based on porous silicon

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

In this paper, vanadium oxide thin film of TCR of −3.5%/K has been deposited by pulsed DC magnetron sputtering method. The property of this VO x has been investigated by X-ray diffractometer (XRD) and atomic force microscopy (AFM) in detail. XRD test indicates that this film is composed of V2O3, V3O5 and VO2.VO x microbolometer with infrared (IR) absorbing structure is fabricated based on porous silicon sacrificial layer technology. Optimized micro-bridge structure is designed and carried out to decrease thermal conductance and this structure shows good compatibility with micromachining technology. This kind of bolometer with 74% IR absorption of 8–14 μm, has maximum detectivity of 1.09×109 cm·Hz1/2/W at 24 Hz frequency and 9.8 μA bias current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu X, Karunasiri G, Chen G, Sridhar U, Xu B. Determination of thermal parameters of microbolometers using a single electrical measurement. Applied Physics Letters, 1998, 72(15): 1881–1883

    Article  Google Scholar 

  2. Niklaus F, Vieider C, Jakobsen H. MEMS-based uncooled infrared bolometer arrays-a review. Proceedings of SPIE, 2007, 6836, 68360D1–6836D15

    Article  Google Scholar 

  3. Mottin E, Martin J L, Ouvrier-Buffet J L, Vilain M, Bain A, Yon J J, Tissot J L, Chatard J P. Enhanced amorphous silicon technology for 320×240 microbolometer arrays with a pitch of 35 μm. Proceedings of SPIE, 2001, 4369: 250–256

    Article  Google Scholar 

  4. Kosasayama Y, Sugino T, Nakaki Y, Fujii Y, Inoue H, Yagi H, Hata H, Ueno M, Takeda M, Kimata M. Pixel scaling for SOI-diode uncooled infrared focal plane arrays. Proceedings of SPIE, 2004, 5406: 504–511

    Article  Google Scholar 

  5. Wallner J Z, Bergstrom P L. A porous silicon based particle filter for microsystems. Physica Status Solidi (a), 2007, 204(5): 1469–1473

    Article  Google Scholar 

  6. Tsamis C, Tserepi A, Nassiopoulou A G. Fabrication of suspended porous silicon micro-hotplates for thermal sensor applications. Physica Status Solidi (a), 2003, 197(2): 539–543

    Article  Google Scholar 

  7. Lysenko V, Perichon S, Remaki B, Barbier D. Thermal isolation in microsystems with porous silicon. Sensors and Actuators A: Physical, 2002, 99(1–2): 13–24

    Article  Google Scholar 

  8. Steiner P, Richter A, Lang W. Using porous silicon as a sacrificial layer. Journal of Micromechanics and Microengineering, 1993, 3(1): 32–36

    Article  Google Scholar 

  9. Searson P C. Porous silicon membranes. Applied Physics Letters, 1991, 59(7): 832–833

    Article  Google Scholar 

  10. Kishino K, Unlu M S, Chyi J I, Reed J, Arsenault L, Morkoc H. Resonant cavity enhanced photodetectors. IEEE Journal of Quantum Electron, 1991, 27(8): 2025–2034

    Article  Google Scholar 

  11. Wang H C, Yi X J, Huang G, Xiao J, Li X W, Chen S H. IR microbolometer with self-supporting structure operating. Infrared Physics & Technology, 2004, 45(1): 53–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Lai, J., Zhao, E. et al. Research on VO x uncooled infrared bolometer based on porous silicon. Front. Optoelectron. 5, 292–297 (2012). https://doi.org/10.1007/s12200-012-0224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-012-0224-7

Keywords

Navigation