Skip to main content
Log in

High-speed, compact silicon and hybrid plasmonic waveguides for signal processing

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

All-optical circuits for signal processing could be a promising solution to overcome the speed bottleneck of electronics. For the photonics industry, silicon becomes a competitive material of choice in the field of integrated optics for designing and implementing high-speed and compact photonic devices. To further increase the integration density, it is a critical challenge to manipulate light on scales much smaller than the wavelength for the dielectric waveguides due to the diffraction limitation. Surface plasmon-polaritons (SPPs), which break the diffraction limitation, are receiving increasing attentions in recent years. This paper compares the advantages and disadvantages between electronic devices and optical devices taking differentiator as an example, and proposes an optical parametric amplifier (OPA) using silicon-based hybrid plasmonic waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koehl S. Silicon photonics could revolutionize future servers and networks. Converge! Network Digest, 2005, http://www.convergedigest.com/blueprints/ttp03/bp1.asp?ID=242&ctgy=Market

  2. Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526

    Article  Google Scholar 

  3. Reed G T. Device physics: the optical age of silicon. Nature, 2004, 427(6975): 595–596

    Article  Google Scholar 

  4. Liu F F, Li Q, Zhang Z Y, Qiu M, Su Y K. Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect. IEEE Journal on Selected Topics in Quantum Electronics, 2008, 14(3): 706–712

    Article  Google Scholar 

  5. Liu F F, Li Q, Zhang Z Y, Qiu M, Su Y K. Ultra-compact mode-split silicon microring resonator for format conversion from NRZ to FSK. Proceedings of SPIE, 2008, 7135: 713537

    Article  Google Scholar 

  6. Li Q, Ye T, Lu Y Y, Zhang Z Y, Qiu M, Su Y K. All optical NRZ-to-AMI conversion using linear filtering effect of silicon microring resonator. Chinese Optics Letters, 2009, 7(1): 12–14

    Article  Google Scholar 

  7. Liu F F, Wang T, Zhang Z Y, Qiu M, Su Y K. On-chip photonic generation of ultra-wideband monocycle pulses. Electronics Letters, 2009, 45(24): 1247–1249

    Article  Google Scholar 

  8. Liu F F, Wang T, Qiang L, Ye T, Zhang Z Y, Qiu M, Su Y K. Compact optical temporal differentiator based on silicon microring resonator. Optics Express, 2008, 16(20): 15880–15886

    Article  Google Scholar 

  9. Ferrera M, Park Y, Razzari L, Little B E, Chu S T, Morandotti R, Moss D J, Azaña J. On-chip CMOS-compatible all-optical integrator. Nature Communications, 2010, 1(29): 1–5

    Article  Google Scholar 

  10. Pile D F P, Ogawa T, Gramotnev D K, Okamoto T, Haraguchi M, Fukui M, Matsuo S. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Applied Physics Letters, 2005, 87(6): 061106

    Article  Google Scholar 

  11. Moreno E, Vidal F J G, Rodrigo S J, Moreno L M, Bozhevolnyi S I. Channel plasmon-polaritons: modal shape, dispersion, and losses. Optics Letters, 2006, 31(23): 3447–3449

    Article  Google Scholar 

  12. Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Optics Letters, 2005, 30(24): 3359–3361

    Article  Google Scholar 

  13. Berini P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structure. Physical Review B: Condensed Matter and Materials Physics, 2001, 63(12): 125417

    Article  Google Scholar 

  14. Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic wavguide for subwavelength confinement and long range propagation. Nature Photonics, 2008, 2(8): 496–500

    Article  Google Scholar 

  15. Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653

    Article  Google Scholar 

  16. Zhou G, Wang T, Su Y K. Design of Plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement. Proceedings of SPIE, 2010, 7987: 79870A

    Article  Google Scholar 

  17. Zhou G, Wang T, Su Y K. Wide broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference and Exhibition. 2010, SuK

  18. Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91

    Article  Google Scholar 

  19. Li Z, Zhang S, Vazquez J M, Lou Y, Khoe G D, Dorren H J S, Lenstra D. Ultrafast optical differentiators based on asymmetric Mach-Zehnder interferometer. In: Proceedings of Symposium IEEE/LEOS. Benelux Chapter, 2006, 173–176

  20. Slavík R, Park Y W, Kulishov M, Azaña J. Terahertz-bandwidth high-order temporal differentiators based on phase-shifted long-period fiber gratings. Optics Letters, 2009, 34(20): 3116–3118

    Article  Google Scholar 

  21. Xu J, Zhang X L, Dong J J, Liu D M, Huang D X. High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter. Optics Letters, 2007, 32(13): 1872–1874

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yikai Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Zhou, G., Li, F. et al. High-speed, compact silicon and hybrid plasmonic waveguides for signal processing. Front. Optoelectron. China 4, 264 (2011). https://doi.org/10.1007/s12200-011-0218-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12200-011-0218-x

Keywords

Navigation