Skip to main content
Log in

Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

A method to enhance surface plasmon coupled fluorescence from copper nanoparticles on silicon nanowires is presented. Owing to resonant plasmons oscillation on the surface of Cu/Si nanostructure, the fluorescence peaks of several lanthanide ions (praseodymium ions, Pr3+, neodymium ions Nd3+, holmium ions Ho3+, and erbium ions Er3+) were markedly enhanced with the enhancement of maximal 2 orders of magnitude, which was larger than that caused by unsupported Cu nanoparticles. These results might be explained by the local field overlap originated from the closed and fixed copper nanoparticles on silicon nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics, 1978, 37: 1–65

    Article  Google Scholar 

  2. Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. Journal of the American Chemical Society, 2006, 128(28): 8998–8999

    Article  Google Scholar 

  3. Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics, 2006, 1(1): 5–33

    Article  Google Scholar 

  4. Aslan K, Holley P, Geddes C D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry, 2006, 16(27): 2846–28525.

    Article  Google Scholar 

  5. Ray K, Chowdhury M H, Lakowicz J R. Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Analytical Chemistry, 2007, 79(17): 6480–6487

    Article  Google Scholar 

  6. Mertens H, Koenderink A F, Polman A. Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(11): 115123-1–115123-12

    Google Scholar 

  7. Lakowicz J R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry, 2001, 298(1): 1–24

    Article  Google Scholar 

  8. Zhang J, Fu Y, Lakowicz J R. Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by netal nanostructure. Journal of Physical Chemistry C, 2007, 111(5): 1955–1961

    Article  Google Scholar 

  9. Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry, 2005, 337(2): 171–194

    Article  Google Scholar 

  10. Bjerneld E J, Földes-Papp Z, Käll M, Rigler R. Single-molecule surface-enhanced raman and fluorescence correlation spectroscopy of horseradish peroxidase. Journal of Physical Chemistry B, 2002, 106(6): 1213–1218

    Article  Google Scholar 

  11. Aslan K, Lakowicz J R, Geddes C D. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. The Journal of Physical Chemistry B, 2005, 109(13): 6247–6251

    Article  Google Scholar 

  12. Zhang Y X, Aslan K, Previte M J R, Geddes C D. Metal-enhanced fluorescence from copper substrates. Applied Physics Letters, 2007, 90(17): 173116

    Article  Google Scholar 

  13. Baluschev S, Yu F, Miteva T, Ahl S, Yasuda A, Nelles G, Knoll W, Wegner G. Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. Nano Letters, 2005, 5(12): 2482–2484

    Article  Google Scholar 

  14. Zhuo S J, Shao M W, Cheng L, Que R H, Zhuo S J, Ma D D D, Lee S T. Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure. Applied Physics Letters, 2010, 96(10): 103108-1–103108-3

    Article  Google Scholar 

  15. Ahrens B, Eisenschmidt C, Johnson J A, Miclea P T, Schweizer S. Structural and optical investigations of Nd-doped fluorozirconate-based glass ceramics for enhanced upconverted fluorescence. Applied Physics Letters, 2008, 92(6): 061905

    Article  Google Scholar 

  16. Aisaka T, Fujii M, Hayashi S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Applied Physics Letters, 2008, 92(13): 132105

    Article  Google Scholar 

  17. Capobianco J A, Boyer J C, Vetrone F, Speghini A, Bettinelli M. Optical spectroscopy and upconversion studies of Ho3+-doped Bulk and Nanocrystalline Y2O3. Chemistry of Materials, 2002, 14(7): 2915–2921

    Article  Google Scholar 

  18. Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 2006, 39(1): 53–61

    Article  Google Scholar 

  19. Tissue B M. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chemistry of Materials, 1998, 10(10): 2837–2845

    Article  Google Scholar 

  20. Hasegawa Y, Wada Y, Yanagida S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2004, 5(3): 183–202

    Article  Google Scholar 

  21. Zhang J, Malicka J, Gryczynski I, Lakowicz J R. Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. Journal of Physical Chemistry B, 2005, 109(16): 7643–7648

    Article  Google Scholar 

  22. Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical application: glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478–1482

    Article  Google Scholar 

  23. Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society, 1993, 115(10): 3887–3896

    Article  Google Scholar 

  24. Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society, 2009, 131(49): 17738–17739

    Article  Google Scholar 

  25. Tsang C H A, Liu Y, Kang Z H, Ma D D D, Wong N B, Lee S T. Metal (Cu, Au)-modified silicon nanowires for high-selectivity solvent-free hydrocarbon oxidation in air. Chemical Communications, 2009, (39): 5829–5831

    Article  Google Scholar 

  26. Gunnarsson L, Bjerneld E J, Xu H, Petronis S, Kasemo B, Käll M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Applied Physics Letters, 2001, 78(6): 802–804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingwang Shao or Shuit Tong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuo, S., Shao, M., Cheng, L. et al. Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires. Front. Optoelectron. China 4, 114–120 (2011). https://doi.org/10.1007/s12200-011-0152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-011-0152-y

Keywords

Navigation