Skip to main content
Log in

Silicon slow light photonic crystals structures: present achievements and future trends

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Slow light in planar photonic structures has attracted for some years an increasing interest due to amazing physical effects it allows or reinforces and to the degrees of freedom it raises for designing new optical functions. Controlling light group velocity is achieved through the use of periodical optical media obtained by nano-structuration of semiconductor wafers at the scale of light wavelength: the so-called photonic crystals. This article reviews present achievements realized in the field of slow light photonic bandgap structures, including the physical principles of slow light to the description of the most advanced integrated optical devices relying on it. Challenges and current hot topics related to slow light are discussed to highlight the balance between the advantages and drawbacks of using slow waves in integrated photonic structures. Then, future trends are described, which is focused on the use of slow wave slot waveguides for nonlinear optics and bio-photonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pavesi L, Guillot G. Optical Interconnects: The Silicon Approach. Berlin: Springer, 2006

    Google Scholar 

  2. Soref R. Silicon photonics: a review of recent literature. Chemistry and Materials Science, 2010, 2(1): 1–6

    Google Scholar 

  3. Jones R, Liao L, Liu A S, Salib M, Rubin D, Coehn O, Samara-Rubio D, Paniccia M. Optical characterization of 1-GHz silicon based optical modulator. Proceedings of SPIE, 2004, 5451: 8–15

    Article  Google Scholar 

  4. Liu A S, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427(6975): 615–618

    Article  Google Scholar 

  5. Marris-Morini D, Le Roux X, Vivien L, Cassan E, Pascal D, Halbwax M, Maine S, Laval S, Fédéli JM, Damlencourt J F. Optical modulation by carrier depletion in a silicon PIN diode. Optics Express, 2006, 14(22): 10838–10843

    Article  Google Scholar 

  6. Marris-Morini D, Vivien L, Fédéli J M, Cassan E, Lyan P, Laval S. Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Optics Express, 2008, 16(1): 334–339

    Article  Google Scholar 

  7. Liao L, Liu A, Basak J, Nguyen H, Paniccia M, Rubin D, Chetrit Y, Cohen R, Izhaky N. 40 Gbit/s silicon optical modulator for highspeed applications. Electronics Letters, 2007, 43(22): DOI 10.1049/el:20072253

  8. Rong H S, Liu A S, Jones R, Cohen O, Hak D, Nicolaescu R, Fang A, Paniccia M. An all-silicon Raman laser. Nature, 2005, 433(7023): 292–294

    Article  Google Scholar 

  9. Rong H S, Jones R, Liu A S, Cohen O, Hak D, Fang A, Paniccia M. A continuous-wave Raman silicon laser. Nature, 2005, 433(7027): 725–728

    Article  Google Scholar 

  10. Foster M A, Turner A C, Sharping J E, Schmidt B S, Lipson M, Gaeta A L. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441(7096): 960–963

    Article  Google Scholar 

  11. Vallaitis T, Bogatscher S, Alloatti L, Dumon P, Baets R, Scimecca ML, Biaggio I, Diederich F, Koos C, Freude W, Leuthold J. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguides geometries. Optics Express, 2009, 17(20): 17357–17368

    Article  Google Scholar 

  12. Wang X L, Lin C Y, Chakravarty S, Luo J D, Jen A K Y, Chen R T. Effective in-device r 33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides. Optics Letters, 2011, 36(6): 882–884

    Article  Google Scholar 

  13. Chan S, Horner R, Fauchet P M, Miller B L. Identification of gram negative bacteria using nanoscale silicon microcavities. Journal of the American Chemical Society, 2001, 123(47): 11797–11798

    Article  Google Scholar 

  14. Lee M, Fauchet P M. Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Optics Express, 2007, 15(8): 4530–4535

    Article  Google Scholar 

  15. Krauss T F. Slow light in photonic crystal waveguides. Journal of Physics D: Applied Physics, 2007, 40(9): 2666–2670

    Article  Google Scholar 

  16. Joannopoulos J D, Johnson S G, Winn J N, Meade R D. Photonic Crystals: Molding the Flow of Light. 2nd ed. Princeton University Press, 2008

  17. Frandsen L H, Lavrinenko A V, Fage-Pedersn J, Borel B. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006, 14(20): 9444–9450

    Article  Google Scholar 

  18. Li J, White T P, O’Faolain L, Gomez-Iglesias A, Krauss T F. Systematic design of flat band slow light in photonic crystal waveguides. Optics Express, 2008, 16(9): 6227–6232

    Article  Google Scholar 

  19. Ebnali-Heidari M, Grillet C, Monat C, Eggleton B J. Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. Optics Express, 2009, 17(3): 1628–1634

    Article  Google Scholar 

  20. Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H, Zhou Z, Zhang X. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18(6): 5942–5950

    Article  Google Scholar 

  21. Hao R, Cassan E, Le Roux X, Gao D, Do Khanh V, Vivien L, Marris-Morini D, Zhang X. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express, 2010, 18(16): 16309–16319

    Article  Google Scholar 

  22. Grillot F, Vivien L, Laval S, Pascal D, Cassan E. Size influence on the propagation loss induced by side-wall roughness in ultra-small SOI waveguides. IEEE Photonics Technology Letters, 2004, 16(7): 1661–1663

    Article  Google Scholar 

  23. Grillot F, Vivien L, Laval S, Cassan E. Propagation loss in singlemode ultra small square silicon-on-isulator optical waveguides. Journal of Lightwave Technology, 2006, 24(2): 891–896

    Article  Google Scholar 

  24. Monat C, Corcoran B, Pudo D, Ebnali-Heidari M, Grillet C, Pelusi M D, Moss D J, Eggleton B, White T P, O’Faolain L, Krauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal on Selected Topics in Quantum Electronics, 2010, 16(1): 344–356

    Article  Google Scholar 

  25. O’Faolain L, Schulz S A, Beggs D M, White T P, Spasenovic M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalanne P, Krauss T F. Loss engineered slow light waveguides. Optics Express, 2010, 18(26): 27627–27638

    Article  Google Scholar 

  26. Askari M, Momeni B, Yegnanarayanan S, Eftekhar A, Adibi A. Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime. Proceedings of SPIE, 2008, 6901: 69011A

    Article  Google Scholar 

  27. Johnson S G, Bienstman P, Skorobogatiy M A, Ibanescu M, Lidorikis E, Joannopoulos J D. Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. Physical Review E, 2002, 66(6): 066608

    Article  Google Scholar 

  28. de Sterke C M, Walker J, Dossou K B, Botten L C. Efficient slow light coupling into photonic crystals. Optics Express, 2007, 15(17): 10984–10990

    Article  Google Scholar 

  29. Hugonin J P, Lalanne P, White T W, Krauss T F. Coupling into slow-mode photonic crystal waveguides. Optics Letters, 2007, 32(18): 2638–2640

    Article  Google Scholar 

  30. de Sterke C M, Dossou K B, White T P, Botten L C, McPhedran R C. Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes. Optics Express, 2009, 17(20): 17338–17343

    Article  Google Scholar 

  31. Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, van Hulst N F, Krauss T F, Kuipers L. Real-space observation of ultraslow light in photonic crystal waveguides. Physical Review Letters, 2005, 94(7): 073903

    Article  Google Scholar 

  32. Asano T, Kiyota K, Kumamoto D, Song B S, Noda S. Time-domain measurement of picosecond light-pulse propagation in a twodimensional photonic crystal-slab waveguide. Applied Physics Letters, 2004, 84(23): 4690–4692

    Article  Google Scholar 

  33. Jacobsen R, Lavrinenko A, Frandsen L, Peucheret C, Zsigri B, Moulin G, Fage-Pedersen J, Borel P. Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides. Optics Express, 2005, 13(20): 7861–7871

    Article  Google Scholar 

  34. Imhof A, Vos W L, Sprik R, Lagendijk A. Large effects near the band edges of photonic crystals. Physical Review Letters, 1999, 83(15): 2942–2945

    Article  Google Scholar 

  35. Vlasov Y A, O’Boyle M, Hamann H F, McNab S J. Active control of slow light on a chip photonic crystal waveguides. Nature, 2005, 438(7064): 65–69

    Article  Google Scholar 

  36. Jiang Y Q, Jiang W, Gu L, Chen X N, Chen R T. 80-micron interaction length photonic crystal waveguide modulator. Applied Physics Letters, 2005, 87(22): 221105

    Article  Google Scholar 

  37. Gu L, Jiang W, Chen X, Wang L, Chen R T. High-speed electrooptical silicon modulators based on photonic crystal waveguides. Proceedings of SPIE, 2007, 6477: 64770Z

    Article  Google Scholar 

  38. Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211

    Article  Google Scholar 

  39. Di Falco A, O’Faolain L, Krauss T F. Photonic crystal slotted slab waveguides. Photonics and Nanostructures — Fundamental and Applications, 2008, 6(1): 38–41

    Article  Google Scholar 

  40. Brosi J M, Koos C, Andreani L C, Waldow M, Freude W. Highspeed low-voltage electro-optics modulator with a polymerinfiltrated silicon photonic crystal waveguide. Optics Express, 2008, 16(6): 4177–4191

    Article  Google Scholar 

  41. Caer C, Le Roux X, Do V K, Marris-Morini D, Izard N, Vivien L, Gao D, Cassan E. Strong light confinement in slot photonic crystal waveguide by Bragg corrugation. IEEE Photonics Technology Letters (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Cassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassan, E., Le Roux, X., Caer, C. et al. Silicon slow light photonic crystals structures: present achievements and future trends. Front. Optoelectron. China 4, 243 (2011). https://doi.org/10.1007/s12200-011-0144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12200-011-0144-y

Keywords

Navigation