Skip to main content
Log in

All-optical signal processing based on semiconductor optical amplifiers

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

In this paper, we review the recent progress in the optical signal processing based on the nonlinearity of semiconductor optical amplifiers (SOAs). The four important optical signal processing functional blocks in optical switching are presented, i.e., optical wavelength conversion, optical regeneration, optical logic, and optical format conversion. We present a brief overview of optical wavelength conversion, and focus on various schemes to suppress the slow gain recovery of the SOA and improve the operating speed of the SOA-based optical switches. Optical regeneration including re-amplification, re-shaping and re-timing is also presented. Optical clock recovery that is essential for optical regeneration is reviewed. We also report the recent advances in optical logic and optical format conversion, respectively. After reviewing the four important optical signal processing functional blocks, the review concludes with the future research directions and photonic integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alferness R C. Optical communications — a view into the future. In: Proceedings of the 34th European Conference on Optical Communication (ECOC). 2008, 1

  2. O’Mahony M J, Politi C, Klonidis D, Nejabati R, Simeonidou D. Future optical networks. IEEE Journal of Lightwave Technology, 2006, 24(12): 4684–4686

    Article  Google Scholar 

  3. Desurvire E B. Capacity demand and technology challenges for lightwave systems in the next two decades. IEEE Journal of Lightwave Technology, 2006, 24(12): 4697–4710

    Article  Google Scholar 

  4. Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H. 69.1-Tb/s (432×171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection. In: Proceedings of Optical Fiber Communication Conference (OFC/NFOEC) 2010. 2010, 1–3

  5. Dorren H J S, Hill M T, Liu Y, Calabretta N, Srivatsa A, Huijskens FM, de Waardt H, Khoe G D. Optical packet switching and buffering by using all-optical signal processing methods. Journal of Lightwave Technology, 2003, 21(1): 2–12

    Article  Google Scholar 

  6. Yoo S J B. Optical packet and burst switching technologies for the future photonic internet. IEEE Journal of Lightwave Technology, 2006, 24(12): 4468–4492

    Article  Google Scholar 

  7. Blumenthal D J, Bowers J E, Rau L, Chou H F, Rangarajan S, Wang W, Poulsen K N. Optical signal processing for optical packet switching networks. IEEE Communications Magazine, 2003, 41(2): S23–S29

    Article  Google Scholar 

  8. Ben Yoo S J. Power consumption in optical packet switches. In: Proceedings of the 34th European Conference on Optical Communication (ECOC). 2008

  9. Nicholes S C, Mašanović M L, Jevremović B, Lively E, Coldren L A, Blumenthal D J. The world’s first InP 8×8 monolithic tunable optical router (MOTOR) operating at 40 Gbps line rate per port. In: Proceedings of Optical Fiber Communication Conference (OFC) 2009. 2009, PDPB1

  10. Zirngibl M. IRIS: optical switching technologies for scalable data networks. In: Proceedings of Optical Fiber Communication Conference (OFC) 2006. 2006, 2

  11. Blumenthal D J, Masanovic M. LASOR (label switched optical router): architecture and underlying integration technologies. In: Proceedings of European Conference on Optical Communication (ECOC). 2005, 49

  12. Ramos F, Kehayas E, Martinez J M, Clavero R, Marti J, Stampoulidis L, Tsiokos D, Avramopoulos H, Zhang J, Holm-Nielsen P V, Chi N, Jeppesen P, Yan N, Monroy I T, Koonen A M J, Hill MT, Liu Y, Dorren H J S, Caenegem R V, Colle D, Pickavet M, Rip ti B. IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops. Journal of Lightwave Technology, 2005, 23(10): 2993–3011

    Article  Google Scholar 

  13. Stamatiadis C, Petrantonakis D, Bakopoulos P, Kehayas E, Zakynthinos P, Kouloumentas Ch, Stampoulidis L, Dekker R, Klein E J, Avramopoulos H. First demonstration of WDM-enabled all-optical wavelength conversion with a SOA and a 2nd order microring resonator ROADM. In: Proceedings of Optical Fiber Communication Conference (OFC). 2009, PDPA8

  14. Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear optics for highs-peed digital information processing. Science, 1999, 286(5444): 1523–1528

    Article  Google Scholar 

  15. Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(6): 1428–1435

    Article  Google Scholar 

  16. Dorren H J S, Lenstra D, Liu Y, Hill M T, Khoe G D. Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE Journal of Quantum Electronics, 2003, 39(1): 141–148

    Article  Google Scholar 

  17. Nuzman C, Leuthold J, Ryf R, Chandrasekhar S, Giles C, Neilson D. Design and implementation of wavelength-flexible network nodes. Journal of Lightwave Technology, 2003, 21(3): 648–663

    Article  Google Scholar 

  18. Gripp J, Duelk M, Simsarian J E, Bhardwaj A, Bernasconi P, Laznicka O, Zirngibl M. Optical switch fabrics for ultra-high capacity IP-routers. Journal of Lightwave Technology, 2003, 21(11): 2839–2850

    Article  Google Scholar 

  19. Kang I, Dorrer C, Zhang LM, Dinu M, Rasras M, Buhl L L, Cabot S, Bhardwaj A, Liu X, Cappuzz M A, Gomez L, Wong-Foy A, Chen Y F, Dutta N K, Patel S S, Neilson D T, Giles C R, Piccirilli A, Jaques J. Characterization of the dynamical processes in alloptical signal processing using semiconductor optical amplifiers. IEEE Journal of Selected Topics Quantum Electronics, 2008, 14(3): 758–769

    Article  Google Scholar 

  20. Mørk J, Mecozzi A. Response function for gain and refractive index dynamics in active semiconductor waveguides. Applied Physics Letters, 1994, 65(14): 1736–1738

    Article  Google Scholar 

  21. Nielsen M L, Mørk J, Suzuki R, Sakaguchi J, Ueno Y. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express, 2006, 14(1): 331–347

    Article  Google Scholar 

  22. Huang X, Qin C, Huang D X, Zhang X L. Local carrier recovery acceleration in quantum well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(10): 1407–1413

    Article  Google Scholar 

  23. Spyropoulou M, Pleros N, Vyrsokinos K, Apostolopoulos D, Bougioukos M, Petrantonakis D, Miliou A, Avramopoulos H. 40 Gb/s NRZ wavelength conversion using a differentially-biased SOA-MZI: theory and experiment. Journal of Lightwave Technology, 2011, 29(10): 1489–1499

    Article  Google Scholar 

  24. Leuthold J, Moller L, Jaques J, Cabot S, Zhang L, Bernasconi P, Cappuzzo M, Gomez L, Laskowski E, Chen E, Wong-Foy A, Griffin A. 160 Gb/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electronics Letters, 2004, 40(9): 554–555

    Article  Google Scholar 

  25. Kang I, Dorrer C, Zhang L, Rasras M, Buhl L, Bhardwaj A, Cabot S, Dinu M, Liu X, Cappuzzo M, Gomez L, Wong-Foy A, Chen Y F, Patel S, Neilson D T, Jacques J, Giles C R. Regenerative all optical wavelength conversion of 40-Gb/s DPSK signals using a semiconductor optical amplifier Mach-Zehnder interferometer. In: Proceedings of European Conference on Optical Communication (ECOC) 2005. 2005, 6: 29–30

    Google Scholar 

  26. Wang J, Maitra A, Freude W, Leuthold J. Regenerative properties of interferometric all-optical DPSK wavelength converters. Optics Express, 2009, 17(25): 22639–22658

    Article  Google Scholar 

  27. Liu Y, Tangdiongga E, Li Z, deWaardt H, Koonen A M J, Khoe G D, Shu X W, Bennion I, Dorren H J S. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. IEEE Journal of Lightwave Technology, 2007, 25(1): 103–108

    Article  Google Scholar 

  28. Liu Y, Tangdiongga E, Li Z, Zhang S X, de Waardt H, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. IEEE Journal of Lightwave Technology, 2006, 24(1): 230–236

    Article  Google Scholar 

  29. Leuthold J, Marom M D, Cabot S, Jaques J J, Ryf R, Giles C R. All-optical wavelength conversion using a pulse reformatting optical filter. Journal of Lightwave Technology, 2004, 22(1): 186–192

    Article  Google Scholar 

  30. Ueno Y, Nakamura S, Tajima K. Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing. Journal of the Optics Society of America B: Optics Physics, 2002, 19(11): 2573–2589

    Article  Google Scholar 

  31. Nielsen M L, Mørk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. Journal of the Optics Society of America B: Optics Physics, 2004, 21(9): 1606–1619

    Article  Google Scholar 

  32. Dong J J, Fu S N, Zhang X L, Shum P, Zhang L R, Huang D X. Analytical solution for SOA-based all-optical wavelength conversion using transient cross-phase modulation. IEEE Photonics Technology Letters, 2006, 18(24): 2554–2556

    Article  Google Scholar 

  33. Agis F G, Raz O, Zhang S, Tangdiongga E, Zimmermann L, Voigt K, Vyrsokinos C, Stampoulidis L, Dorren H J S. All-optical wavelength conversion at 160 Gbit/s using SOA and silicon-oninsulator photonic circuit. Electronics Letters, 2009, 45(22): 1132–1133

    Article  Google Scholar 

  34. Manning R J, Yang X, Webb R P, Giller R, Cotter D. Cancellation of non-linear patterning in semiconductor amplifier based switches. In: Proceedings of Optical Amplifiers and Their Applications. 2006, OTuC1

  35. Yang X L, Manning R J, Webb R P, Giller R, Gunning F, Cotter D. High-speed all-optical signal processing using semiconductor optical amplifiers. In: Proceedings of the 8th International Conference on Transparent Optical Networks (ICTON). 2006, 161–164

  36. Dupertuis M A, Pleumeekers J L, Hessler T P, Selbmann P E, Deveaud B, Dagens B, Emery J Y. Extremely fast high-gain and low-current SOA by optical speed-up at transparency. IEEE Photonics Technology Letters, 2000, 12(11): 1453–1455

    Article  Google Scholar 

  37. Pleumeekers J L, Kauer M, Dreyer K, Burrus C, Dentai A G, Shunk S, Leuthold J, Joyner C H. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photonics Technology Letters, 2002, 14(1): 12–14

    Article  Google Scholar 

  38. Matsumoto A, Nishimura K, Utaka K, Usami M. Operational design on high-speed semiconductor optical amplifier with assist light for application to wavelength converters using cross-phase modulation. IEEE Journal of Quantum Electronics, 2006, 42(3): 313–323

    Article  Google Scholar 

  39. Wu Z, Huang Y, Wang Y, Wan J, Ye R. Novel scheme to increase the operation speed of a SOA for all-optical wavelength conversion. Proceedings of SPIE, 2007, 6782: 67822A

    Article  Google Scholar 

  40. Bramann G, Wünsche H J, Busolt U, Schmidt C, Schlak M, Sartorius B, Nolting H P. Two-wave competition in ultralong semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2005, 41(10): 1260–1267

    Article  Google Scholar 

  41. Runge P, Bunge C A, Petermann K. All-optical wavelength conversion with extinction ratio improvement of 100 Gb/s RZ-signals in ultralong bulk semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(6): 937–944

    Article  Google Scholar 

  42. Jungho K L, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2009, 45(3): 240–248

    Article  Google Scholar 

  43. Yu Y, Huang L R, Xiong M, Tian P, Huang D X. Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier. Journal of the Optical Society of America B: Optical Physics, 2010, 27(11): 2211–2217

    Article  Google Scholar 

  44. Meuer C, Schmidt-Langhorst C, Bonk R, Schmeckebier H, Arsenijevi D, Fiol G, Galperin A, Leuthold J, Schubert C, Bimberg D. 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Optics Express, 2011, 19(6): 5134–5142

    Article  Google Scholar 

  45. Contestabile G, Maruta A, Sekiguchi S, Morito K, Sugawara M, Kitayama K. 80 Gb/s multicast wavelength conversion by XGM in a QD-SOA. In: Proceedings of the 36th European Conference on Optical Communication (ECOC). 2010, 1–3

  46. Leclerc O, Lavigne B, Balmefrezol E, Brindel P, Pierre L, Rouvillain D, Seguineau F. Optical regeneration at 40 Gb/s and beyond. Journal of Lightwave Technology, 2003, 21(11): 2779–2790

    Article  Google Scholar 

  47. Phillips I D, Ellis A D, Thiele J, Manning R J, Kelly A E. 40 Gbit/s all-optical data regeneration and demultiplexing with long pattern lengths using a semiconductor nonlinear interferometer. Electronics Letters, 1998, 34(24): 2340–2342

    Article  Google Scholar 

  48. Vivero T, Calabretta N, Monroy I T, Kassar G C, Öhman F, Yvind K, González-Marcos A, Mørk J. 10 Gb/s-NRZ Optical 2R-regeneration in two-section SOA-EA chip. In: Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society. 2007, 806–807

  49. Pan S L, Huo L, Yang Y F, Lou C Y, Gao Y Z. First and second order PMD mitigation using 3R regeneration. Proceedings of SPIE, 2005, 6021: 602108

    Article  Google Scholar 

  50. Fernandez A, Chao L, Chi J W D. All-optical clock recovery and pulse reshaping using semiconductor optical amplifier and dispersion compensating fiber in a ring cavity. IEEE Photonics Technology Letters, 2008, 20(13): 1148–1150

    Article  Google Scholar 

  51. Tang X F, Cartledge J C, Shen A, Dijk F V, Akrout A, Duan G H. Characterization of all-optical clock recovery for 40 Gb/s RZ-OOK and RZ-DPSK data using mode-lock semiconductor laser. Journal of Lightwave Technology, 2009, 27(20): 4603–4609

    Article  Google Scholar 

  52. Arahira S, Takahashi H, Nakamura K, Yaegashi H, Ogawa Y. Polarization-, wavelength-, and filter-free all-optical clock recovery in a passively mode-lock laser diode with orthogonally pumped polarization-diversity configuration. IEEE Journal of Quantum Electronics, 2009, 45(5): 476–487

    Article  Google Scholar 

  53. Arahira S. Variable-in, variable-out optical clock recovery with an optically injection-locked and regeneratively actively mode-locked laser diode. IEEE Journal of Quantum Electronics, 2011, 47(5): 614–621

    Article  Google Scholar 

  54. Cetina J P, Latkowshi S, Maldonado-Basilio R, Landais P. Wavelength tunability of all-optical clock-recovery based on quantum-dash mode-locked laser diode under injection of a 40-Gbs NRZ data stream. IEEE Photonics Technology Letters, 2011, 23(9): 531–533

    Article  Google Scholar 

  55. Chen L R, Cartledge J C. Mode-locking in a semiconductor fiber laser using cross-absorption modulation in an electroabsorption modulator and application to all-optical clock recovery. Journal of Lightwave Technology, 2008, 26(7): 799–806

    Article  Google Scholar 

  56. Silva M C, Lagrost A, Bramerie L, Gay M, Besnard P, Joindot M, Simon J C, Shen A, Duan G H. Up to 427 GHz all optical frequency down-conversion clock recovery based on quantumdash Fabry-Perot mode-locked laser. Journal of Lightwave Technology, 2011, 29(4): 609–615

    Article  Google Scholar 

  57. Ohno T, Sato K, Iga R, Kondo Y, Ito T, Furuta T, Yoshino K, Ito H. Recovery of 160 GHz optical clock from 160 Gbit/s data stream using modelocked laser diode. Electronics Letters, 2004, 40(4): 265–266

    Article  Google Scholar 

  58. Tang X F, Cartledge J C, Shen A, Dijk F V, Duan G H. All-optical clock recovery for 40-Gbs MZM-generated NRZ-DPSK signals using a self-pulsating DBR laser. IEEE Photonics Technology Letters, 2008, 20(17): 1443–1445

    Article  Google Scholar 

  59. Monfils L, Cartedge J C. Detailed theoretical and experimental characterization of 10 Gb/s clock recovery using a Q-switched self-pulsating laser. Journal of Lightwave Technology, 2009, 27(5): 619–626

    Article  Google Scholar 

  60. Sun Y, Pan J Q, Zhao L J, Chen WX, Wang W, Wang L, Zhao X F, Lou C Y. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser. IEEE Journal of Lightwave Technology, 2010, 28(17): 2521–2524

    Article  Google Scholar 

  61. Wang L, Zhao X, Lou C, Lu D, Sun Y, Zhao L, Wang W. 40 Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser. Applied Optics, 2010, 49(34): 6577–6581

    Article  Google Scholar 

  62. Tang X F, Cartledge J C, Shen A, Dijk F V, Duan G H. 40-Gbs polarization-insensitive all-optical clock recovery using a quantum-dot Fabry-Perot laser assisted by an SOA and bandpass filtering. IEEE Photonics Technology Letters, 2008, 20(24): 2051–2053

    Article  Google Scholar 

  63. Wang F, Zhang X L, Xu E M, Zhang Y. A novel all-optical clock recovery scheme. In: Proceedings of Communications and Photonics Conference and Exhibition (ACP) 2009. 2009, 1–6

  64. Cartledge J C, Tang X F, Yañez M, Shen A, Akrout A, Duan G H. All-optical clock recovery using a quantum-dash Fabry-Perot laser. In: Proceedings of IEEE Topic Meeting on Microwave Photonics (MWP). 2010, 201–204

  65. Spyropoulou M, Pleros N, Papadimitriou G, Tomkos I, Pomportsis A. Multi-wavelength clock recovery based on a Fabry-Perot filter and a quantum-dot semiconductor optical amplifier. In: Proceedings of the 10th Anniversary International Conference on Transparent Optical Networks. 2008, 128–131

  66. Wang F, Yu Y, Huang X, Zhang X L. Single and multiwavelength all-optical clock recovery using Fabry-Pérot semiconductor optical amplifier. IEEE Photonics Technology Letters, 2009, 21(16): 1109–1111

    Article  Google Scholar 

  67. Parra-Cetina J, Latkowski S, Maldonado-Basilio R, Landais P. Timing jitter and all-optical clock recovery based on a quantum-dash Fabry-Pérot semiconductor laser. In: Proceedings of the 12th Anniversary International Conference on Transparent Optical Networks. 2010, 1–4

  68. Poustie A. SOA-based all-optical processing. In: Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference. 2007, OWF1

  69. Wolfson D, Hansen P B, Kioch A, Stubkjaer K E. All-optical 2R regeneration based on interferometric structure incorporating semiconductor optical amplifiers. Electronics Letters, 1999, 35(1): 59–60

    Article  Google Scholar 

  70. Gavioli G, Thomsen B C, Mikhailov V, Bayvel P. Cascadability properties of optical 3R regenerators based on SOAs. Journal of Lightwave Technology, 2007, 25(9): 2766–2775

    Article  Google Scholar 

  71. Duan P X, Chen L G, Zhang S J, Zhou X L, Liu Y Z, Liu Y. Alloptical 2R regeneration based on self-induced polarization rotation in a single semiconductor optical amplifier. Chinese Science Bulletin, 2009, 54(20): 3704–3708

    Article  Google Scholar 

  72. Zhu Z, Funabashi M, Pan Z, Paraschis L, Yoo S J. 1000 cascaded stages of optical 3R regeneration with SOA-MZI-based clock enhancement to achieve 10-Gb/s 125000-km dispersion uncompensated transmission. IEEE Photonics Technology Letters, 2006, 18(20): 2159–2161

    Article  Google Scholar 

  73. Zhao X F, Wang L, Lu D, Lou C Y, Sun Y, Zhao L J, Wang W. 40-Gb/s all-optical 3R regeneration with semiconductor devices. In: Proceedings of the 19th Annual Wireless and Optical Communications Conference (WOCC). 2010, 1–3

  74. Contestabile G, Proietti R, Presi M, Ciaramella E. 40Gb/s wavelength preserving 2R regeneration for both RZ and NRZ signals. In: Proceedings of Optical Fiber Communication Conference. 2008, OWK1

  75. Errico A D, Contestabile G, Proietti R, Presi M, Ciaramella E, Bramerie L, Gay M, Lobo S, Joindot M, Simon J C, Massoubre D, Nguyen H T, Oudar J L. 2R optical regeneration combining XGC in a SOA and a saturable absorber. In: Proceedings of Optical Fiber Communication Conference. 2008, OWK4

  76. Contestabile G. All-optical signal regeneration using SOAs. In: Proceedings of Asia Communications and Photonics Conference and Exhibition. 2010, 7–8

  77. Chan L Y, Qureshi K K, Wai P K A, Moses B, Lui L F K, Tam H Y, Demokan M S. All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate. IEEE Photonics Technology Letters, 2003, 15(4): 593–595

    Article  Google Scholar 

  78. Martinez J M, Ramos F, Marti J. All-optical packet header processor based on cascaded SOA-MZIs. Electronics letters, 2004, 40(14): 894–895

    Article  Google Scholar 

  79. Fjelde T, Kloch A, Wolfson D, Dagens B, Coquelin A, Guillemot I, Gaborit F, Poingt F, Renaud M. Novel scheme for simple label-swapping employing XOR logic in an integrated interferometer wavelength converter. IEEE Photonics Technology Letters, 2001, 13(7): 750–752

    Article  Google Scholar 

  80. Bintjas C, Pleros N, Yiannopoulos K, Theophilopoulos G, Kalyvas M, Avramopoulos H, Guekos G. All-optical packet address and payload separation. IEEE photonic technology letters, 2002, 14(12): 1728–1730

    Article  Google Scholar 

  81. Martinez J M, Liu Y, Clavero R, Koonen A M J, Herrera J, Ramos F, Dorren H J S, Marti J. All-optical processing based on a logic XOR gate and a flip-flop memory for packet-switched networks. IEEE Photonics Technology Letters, 2007, 19(17): 1316–1318

    Article  Google Scholar 

  82. Kim J H, Jhon Y M, Byun Y T, Lee S, Woo D H, Kim S H. Alloptical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technology Letters, 2002, 14(10): 1436–1438

    Article  Google Scholar 

  83. Kim S H, Kim J H, Yu B G, Byun Y T, Jeon YM, Lee S, Woo D H. All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electronics Letters, 2005, 41(18): 1027–1028

    Article  Google Scholar 

  84. Reis C, Dionísio R P, Neto B, Teixeira A, André P. All-optical XOR based on integrated MZI-SOA with Co and counter-propagation scheme. In: Proceedings of ICTON Mediterranean Winter Conference. 2009, 1–4

  85. Yang X L, Weng Q W, Hu W S. High-speed all-optical XOR gates using semiconductor optical amplifiers in ultrafast nonlinear interferometers. Frontiers of Optoelectronics in China, 2010, 3(3): 245–252

    Article  Google Scholar 

  86. Li Z, Liu Y, Zhang S, Ju H, deWaardt H, Khoe G D, Dorren H J S, Lenstra D. All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electronics Letters, 2005, 41(25): 1397–1399

    Article  Google Scholar 

  87. Han L Y, Zhang H Y, Jiang H, Wen H, Guo Y L. All-optical NOR and OR logic gates based on cross-polarization modulation in a semiconductor optical amplifier. Optics Engineering, 2008, 47(1): 015001

    Article  Google Scholar 

  88. Li Z H, Li G F. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technology Letters, 2006, 18(12): 1341–1343

    Article  Google Scholar 

  89. Li P L, Huang D X, Zhang X L. SOA-based ultrafast multifunctional all-optical logic gates with PolSK modulated signals. IEEE Journal of Quantum Electronics, 2009, 45(12): 1542–1550

    Article  MathSciNet  Google Scholar 

  90. Zhang X L, Xu J, Dong J J, Huang D X. All-optical logic gates based on semiconductor optical amplifiers and tunable filters. Lecture Notes in Computer Science, 2009, 5882: 19–29

    Article  Google Scholar 

  91. Dong J, Zhang X, Wang F, Yu Y, Huang D. Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier. Electronics Letters, 2008, 44(12): 763–764

    Article  Google Scholar 

  92. Tan H N, Matsuura M, Kishi N. Wavelength-shift-free multichannel width-tunable NRZ-to-RZ modulation format conversion using a single SOA-based Sagnac interferometer. In: Proceedings of the Optoelectronics and Communications Conference. 2010, 208–209

  93. Astar W, Carter G M. 10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver. Electronics Letters, 2008, 44(5): 369–370

    Article  Google Scholar 

  94. Li P L, Huang D X, Zhang X L, Chen H M. Ultrahigh-speed multifunctional all-optical logic gates based on FWM in SOAs with PolSK modulated signals. In: Proceedings of Optical Fiber Communication Conference. 2008, 1–3

  95. Nissanka S M, Maruta A, Mitani S, Shimizu K, Miyahara T, Aoyagi T, Hatta T, Sugitatsu A, Kitayama K I. All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using integrated SOA three-arm-MZI wavelength converter. In: Proceedings of Optical Fiber Communication Conference. 2009, 1–3

  96. Wu B B, Fu S N, Wu J, Shum P, Ngo N Q, Xu K, Hong X B, Lin J T. 40 Gb/s multifunction optical format conversion module with wavelength multicast capability using nondegenerate four-wave mixing in a semiconductor optical amplifier. Journal of Lightwave Technology, 2009, 27(20): 4446–4454

    Article  Google Scholar 

  97. Smit M K, Bente E A J M, Hill M T, Karouta F, Leijtens X J M, Oei Y S, van der Tol J J G M, Notzel R, Koenraad P M, Dorren H S, de Waardt H, Koonen A M J, Khoe G D. Current status and prospects of photonic IC technology. In: Proceedings of IEEE Conference on Indium Phosphide and Related Materials. 2007, 3–6

  98. Liu Y, Nan Y, Wang B J, Zhou D B, An X, Bian J, Pan J Q, Zhao L J, Wang W. Monolithic integration of widely tunable sampled grating DBR laser with tilted semiconductor optical amplifier. Journal of Semiconductors, 2010, 31(7): 074003

    Article  Google Scholar 

  99. Liu H B, Zhao L J, Pan J Q, Zhu H L, Zhou F, Wang B J, Wang W. Monolithic integration of sampled grating DBR with electroabsorption modulator by combining selective-area-growth MOCVD and quantum-well intermixing. Chinese Physics Letters, 2008, 25(10): 3670–3672

    Article  Google Scholar 

  100. Kang I, Rasras M, Buhl L, Dinu M, Cabot S, Cappuzzo M, Gomez L T, Chen Y F, Patel S S, Dutta N, Piccirilli A, Jaques J, Giles C R. Generation of 173-Gb/s single-polarization QPSK signals by all-optical format conversion using a photonic integrated device. In: Proceedings of the 35th European Conference on Optical Communication (ECOC). 2009, 1–2

  101. Poustie A. Hybrid integration for advanced photonic devices. In: Proceedings of European Conference on Integrated Optics (ECIO). 2008, WeB1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Chen, L., Xu, T. et al. All-optical signal processing based on semiconductor optical amplifiers. Front. Optoelectron. China 4, 231 (2011). https://doi.org/10.1007/s12200-011-0141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12200-011-0141-1

Keywords

Navigation