Skip to main content
Log in

Photonic nano-device for optical signal processing

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Micro/nanostructure photonic devices offer a variety of enabling properties, including low power-consumption, cost-efficient, compact size, and reliability. These distinctive features have been exploited in a wealth of applications ranging from telecommunication and optical interconnect to photonic network on chip. In this paper, we review two main classes of micro/nanostructure photonic devices, to provide the kinds of functions for optical signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorren H, Herrera J, Raz O, Tangdiongga E, Liu Y, Marti J, Ramos F, Maxwell G, Poustie A, Mulvad H C H, Hill M T, de Waardt H, Koonen A M J, Khoe G D. All-optical devices for ultrafast packet switching. In: Proceedings of IEEE LEOS’07. 2007, 729–730

  2. Matsumoto M. A fiber-based all-optical 3R regenerator for DPSK signals. IEEE Photonics Technology Letters, 2007, 19(5): 273–275

    Article  Google Scholar 

  3. Wang J, Sun J. All-optical logic XOR gate for high-speed CSRZDPSK signals based on cSFG/DFG in PPLN waveguide. Electronics Letters, 2010, 46(4): 288–290

    Article  Google Scholar 

  4. Ji H, Pu M H, Hu H, Galili M, Oxenløwe L K, Yvind K, Hvam J M, Jeppesen P. Optical waveform sampling and error-free demultiplexing of 1.28 Tb/s serial data in a nanoengineered silicon waveguide. Journal of Lightwave Technology, 2011, 29(4): 426–431

    Article  Google Scholar 

  5. Koos C, Jacome L, Poulton C, Leuthold J, Freude W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Optics Express, 2007, 15(10): 5976–5990

    Article  Google Scholar 

  6. Su Y, Li Q, Liu F F, Zhang Z Y, Qiu M. Optical signal processing in silicon nano-waveguides. In: Proceedings of Joint Conference of the Opto-Electronics and Communications Conference, 2008 and the 2008 Australian Conference on Optical Fibre Technology. 2008, 1–2

  7. Prabhu A M, Van V, Herman W N, Ho P T. Compact silicon microring-assisted directional couplers for optical signal processing applications. Optics Letters, 2009, 34(8): 1249–1251

    Article  Google Scholar 

  8. Dai D X, He S L. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653

    Article  Google Scholar 

  9. Chen L, Shakya J, Lipson M. Subwavelength confinement in an integrated metal slot waveguide on silicon. Optics Letters, 2006, 31(14): 2133–2135

    Article  Google Scholar 

  10. Yeom D I, Mägi E C, Lamont M R E, Roelens M A F, Fu L B, Eggleton B J. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Optics Letters, 2008, 33(7): 660–662

    Article  Google Scholar 

  11. Grubsky V, Savchenko A, Glass micro-fibers for efficient third harmonic generation. Optics Express, 2005, 13(18): 6798–6806

    Article  Google Scholar 

  12. Broderick N G. Optical snakes and ladders: dispersion and nonlinearity in microcoil resonators. Optics Express, 2008, 16(20): 16247–16254

    Article  Google Scholar 

  13. Jiang X S, Chen Y, Vienne G, Tong L M. All-fiber add-drop filters based on microfiber knot resonators. Optics letters, 2007, 32(12): 1710–1712

    Article  Google Scholar 

  14. Pöllinger M, Rauschenbeutel A. All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect. Optics Express, 2010, 18(17): 17764–17775

    Article  Google Scholar 

  15. Wang Z C, Tang Y B, Wosinski L. High efficiency grating couplers for silicon-on-insulator photonic circuits. In: Proceedings of the 36th European Conference and Exhibition on Optical Communication (ECOC). 2010, 1–3

  16. Hong Z H, Li X W, Zhou L J, Shen XW, Shen J G, Li S G, Chen J P. Coupling characteristics between two conical micro/nano fibers: simulation and experiment. Optics Express, 2011, 19(5): 3854–3861

    Article  Google Scholar 

  17. Tong L M, Gattass R R, Ashcom J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 2003, 426(6968): 816–819

    Article  Google Scholar 

  18. Leon-Saval S, Birks T, Wadsworth W, Russell P St. J, Mason M. Supercontinuum generation in submicron fibre waveguides. Optics Express, 2004, 12(13): 2864–2869

    Article  Google Scholar 

  19. Mägi E C, Fu L B, Nguyen H C, Lamont M R, Yeom D I, Eggleton B J. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Optics Express, 2007, 15(16): 10324–10329

    Article  Google Scholar 

  20. Tong L M, Hu L L, Zhang J J, Qiu J R, Yang Q, Lou J Y, Shen Y H, He J L, Ye Z Z. Photonic nanowires directly drawn from bulk glasses. Optics Express, 2006, 14(1): 82–87

    Article  Google Scholar 

  21. Brambilla G, Koizumi F, Feng X, Richardson D J. Compound-glass optical nanowires. Electronics Letters, 2005, 41(7): 400–402

    Article  Google Scholar 

  22. Guo M L, Shi J C, Li B J. Polymer-based micro/nanowire structures for three-dimensional photonic integrations. Optics letters, 2008, 33(18): 2104–2106

    Article  Google Scholar 

  23. Grubsky V, Savchenko A. Glass micro-fibers for efficient third harmonic generation. Optics Express, 2005, 13(18): 6798–6806

    Article  Google Scholar 

  24. Lou J Y, Tong LM, Ye Z Z. Modeling of silica nanowires for optical sensing. Optics Express, 2005, 13(6): 2135–2140

    Article  Google Scholar 

  25. Brambilla G, Finazzi V, Richardson D. Ultra-low-loss optical fiber nanotapers. Optics Express, 2004, 12(10): 2258–2263

    Article  Google Scholar 

  26. Lou N, Jha R, Domínguez-Juárez J L, Finazzi V, Villatoro J, Badenes G, Pruneri V. Embedded optical micro/nano-fibers for stable devices. Optics letters, 2010, 35(4): 571–573

    Article  Google Scholar 

  27. Tong L M, Lou J Y, Mazur E. Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides. Optics Express, 2004, 12(6): 1025–1035

    Article  Google Scholar 

  28. Sumetsky M, Dulashko Y, Fini JM, Hale A. Optical microfiber loop resonator. Applied Physics Letters, 2005, 86(16): 161108

    Article  Google Scholar 

  29. Chuo S M, Chen J H, Wang L A. Feasibility study of making patterned optical devices based on microfibers for optical interconnect applications. Photonics Technology Letters, 2010, 22(6): 395–397

    Article  Google Scholar 

  30. Liang W, Huang Y Y, Xu Y, Lee R K, Yariv A. Highly sensitive fiber Bragg grating refractive index sensors. Applied Physics Letters, 2005, 86(15): 151122

    Article  Google Scholar 

  31. Xuan H F, Jin W, Zhang M. CO2 laser induced long period gratings in optical microfibers. Optics Express, 2009, 17(24): 21882–21890

    Article  Google Scholar 

  32. Yu X C, Li X W, Zhang Y, Zhou L J, Jiang W N, Chen J P. Fabrication of microfiber-based Bragg gratings with ultraviolet-light exposure. In: Proceedings of Optical Fiber Communication Conference 2011. 2011, OTuC2

  33. Lu Z L, Prather DW. Total internal reflection-evanescent coupler for fiber-to-waveguide integration of planar optoelectric devices. Optics letters, 2004, 29(15): 1748–1750

    Article  Google Scholar 

  34. Smith B T, Feng D Z, Lei H B, Zheng D W, Fong J, Asghari M. Fundamentals of silicon photonic devices. http://www.kotura.com/pdf/KOTURA_Fundamentals_of_Silicon_Photonic_Devices.pdf

  35. Rong H S, Xu S B, Cohen O, Raday O, Lee M, Sih V, Paniccia M. A cascaded silicon Raman laser. Nature Photonics, 2008, 2(3): 170–174

    Article  Google Scholar 

  36. Park H, Fang AW, Liang D, Kuo Y H, Chang H H, Koch B R, Chen H W, Sysak M N, Jones R, Bowers J E. Photonic integration on the hybrid silicon evanescent device platform. Advances in Optical Technologies, 2008, 682978

  37. Liu A, Jones R, Liao L, Samara-Rubio D, Rubin D, Cohen O, Nicolaescu R, Paniccia M. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 2004, 427(6975): 615–618

    Article  Google Scholar 

  38. Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen HW, Zaoui WS, Bowers J E, Beling A, McIntosh D C, Zheng X G, Campbell J C. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gainbandwidth product. Nature Photonics, 2009, 3(1): 59–63

    Article  Google Scholar 

  39. Kou Q, Yesilyurt I, Studer V, Belotti M, Cambril E, Chen Y. Onchip optical components and microfluidic systems. Micro and Nano Engineering, 2004, 73–74(1): 876–880

    Article  Google Scholar 

  40. Iwai H. CMOS downsizing toward sub-10 nm. Solid-State Electronics, 2004, 48(4): 497–503

    Article  Google Scholar 

  41. Bohr M. Intel’s silicon research and development pipeline. Technical Report, 2006

  42. Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 728–749

    Article  Google Scholar 

  43. Haurylau M, Chen H, Zhang J D, Chen G Q, Nelson N A, Albonesi D H, Friedman E G, Fauchet P M. On-chip optical interconnect roadmap: challenges and critical directions. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1699–1705

    Article  Google Scholar 

  44. Tominaga J, Mihalcea C, Büchel D, Fukuda H, Nakano T, Atoda N, Fuji H, Kikukawa T. Local plasmon photonic transistor. Applied Physics Letters, 2001, 78(17): 2417–2419

    Article  Google Scholar 

  45. Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 2006, 311(5758): 189–193

    Article  Google Scholar 

  46. Avrutsky I, Soref R, Buchwald W. Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Optics Express, 2010, 18(1): 348–363

    Article  Google Scholar 

  47. Agranovich V M, Mills D L. Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces. New York: Elsevier, 1982

    Google Scholar 

  48. Agranovich V M, Mills D L. Surface polaritons: electromagnetic waves at surfaces and interfaces. Journal of the Optical Society of America B: Optical Physics, 1984, 1(3): 410

    Google Scholar 

  49. Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit. Nature Photonics, 2010, 4(2): 83–91

    Article  Google Scholar 

  50. Moreno E, Garcia-Vidal F J, Rodrigo S G, Martin-Moreno L, Bozhevolnyi S I. Channel plasmon-polaritons: modal shape, dispersion, and losses. Optics Letters, 2006, 31(23): 3447–3449

    Article  Google Scholar 

  51. Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511

    Article  Google Scholar 

  52. Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071

    Article  Google Scholar 

  53. Veronis G, Fan S H. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Optics Letters, 2005, 30(24): 3359–3361

    Article  Google Scholar 

  54. Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650

    Article  Google Scholar 

  55. Pile D F P, Gramotnev D K, Oulton R F, Zhang X. On long-range plasmonic modes in metallic gaps. Optics Express, 2007, 15(21): 13669–13674

    Article  Google Scholar 

  56. Verhagen E, Polman A, Kuipers L K. Nanofocusing in laterally tapered plasmonic waveguides. Optics Express, 2008, 16(1): 45–57

    Article  Google Scholar 

  57. Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation. Nature Photonics, 2008, 2(8): 496–500

    Article  Google Scholar 

  58. Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979

    Article  Google Scholar 

  59. Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal dielectric-gap optical waveguides. IEEE of Photonics Technology Letters, 2009, 21(6): 362–364

    Article  Google Scholar 

  60. Dionne J A, Diest K, Sweatlock A L, Atwater H A. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Letters, 2009, 9(2): 897–902

    Article  Google Scholar 

  61. Veronis G, Fan S. Bends and splitters in subwavelength metaldielectric-metal plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102

    Article  Google Scholar 

  62. Wang B, Wang G. Plasmon Bragg reflectors and nanocavities on flat metallic surface. Applied Physics Letters, 2005, 87(1): 013107

    Article  Google Scholar 

  63. Thylén L, Qiu M, Anand S. Photonic crystals — a step towards integrated circuits for photonics. ChemPhysChem, 2004, 5(9): 1268–1283

    Article  Google Scholar 

  64. Mekis A, Chen J C, Kurland I, Fan S H, Villeneuve P R, Joannopoulos J D. High transmission through sharp bends in photonic crystal waveguides. Physical Review Letters, 1996, 77(18): 3787–3790

    Article  Google Scholar 

  65. Smajic J, Hafner C, Erni D. Design and optimization of an achromatic photonic crystal bend. Optics Express, 2003, 11(12): 1378–1384

    Article  Google Scholar 

  66. Han S Z, Tian J, Ren C, Xu X S, Li Z Y, Cheng B Y, Zhang D Z. A Y-branch photonic crystal slab waveguide with an ultrashort interport interval. Chinese Physics Letters, 2005, 22(8): 1934

    Article  Google Scholar 

  67. Faraon A, Waks E, Englund D. Efficient photonic crystal cavity-waveguide couplers. Applied Physics Letters, 2007, 90(7): 073102

    Article  Google Scholar 

  68. Ogusu K, Takayama K. Transmission characteristics of photonic crystal waveguides with stubs and their application to optical filters. Optics Letters, 2007, 32(15): 2185–2187

    Article  Google Scholar 

  69. Fujisawa T, Koshiba M. Finite-element modeling of nonlinear interferometers based on photonic-crystal waveguides for all-optical signal processing. Journal of Lightwave Technology, 2006, 24(1): 617–623

    Article  Google Scholar 

  70. Tsuchizawa T, Yamada K, Fukuda H, Watanabe T, Takahashi J, Takahashi M, Shoji T, Tamechika E, Itabashi S, Morita H. Microphotonics devices based on silicon microfabrication technology. IEEE Journal of Selected Topics in Quantum Electron, 2005, 11(1): 232–240

    Article  Google Scholar 

  71. Almeida V R, Xu Q, Barrios C A, Lipson M, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211

    Article  Google Scholar 

  72. Sun X M, Zhou L J, Li X W, Hong Z H, Chen J P. Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide. Applied Optics, 2011, 143309 (accepted)

  73. Galarza M, de Mesel K, Verstuyft S, Aramburu C, Lopez-Amo M, Moerman I, Van Daele P, Baets R. A new spot-size converter concept using fiber-matched antiresonant reflecting optical waveguides. Journal of Lightwave Technology, 2003, 21(1): 269–274

    Article  Google Scholar 

  74. Almeida V R, Panepucci R, Lipson M. Nanotaper for compact mode conversion. Optics Letters, 2003, 28(15): 1302–1304

    Article  Google Scholar 

  75. Taillaert D, Bienstman P, Baets R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Optics Letters, 2004, 29(23): 2749–2751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Hong, Z. & Sun, X. Photonic nano-device for optical signal processing. Front. Optoelectron. China 4, 254 (2011). https://doi.org/10.1007/s12200-011-0136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12200-011-0136-y

Keywords

Navigation