Skip to main content
Log in

A novel architecture of optical code label generation and recognition for optical packet switching

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

A novel architecture of optical code (OC) label generation and recognition for optical packet switching (OPS) by using super structured fiber Bragg grating (SSFBG) is proposed. The OC label is generated and recognized by a label generator and recognizer, respectively. The label generator is composed of N encoders in parallel, and it can generate 2N kinds of serial optical code labels (SOCLs) for indicating 2N network routing information. The label recognizer can decode SOCLs by N decoders in parallel and provides label information to the switching control unit so that clock information is not required during the decoding process. In the switch nodes, handling of the high-speed information payload stream and the recognition of the OC label are performed in the optical domain, while processing of the routing information remains in the electrical domain. This approach could be a promising solution for an OPS network with high capacity, good quality of service (QoS), multi-service function and high security. In this experiment, we demonstrate 40 Gbps 256 label optical packet switching that employs clockless SOCL processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitayama K, Wang X, Wada N. OCDMA over WDM PON-solution path to gigabit-symmetric FTTH. Journal of Lightwave Technology, 2006, 24(4): 1654–1662

    Article  Google Scholar 

  2. Yuang M, Chao I, Lo B, Tien P, Chen J, Wei C, Lin Y, Lee S S W, Chien C. HOPSMAN: an experimental testbed system for a 10-Gb/s optical packet-switched WDM metro ring network. IEEE Communications Magazine, 2008, 46(7): 158–166

    Article  Google Scholar 

  3. Yuang M C, Lee S S W, Tien P L, Lin Y M, Shih J, Tsai F, Chen A. Optical coarse packet-switched IP-over-WDM network OPSINET: technologies and experiments. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 117–127

    Article  Google Scholar 

  4. Li H, Thng I L J. Cost-saving two-layer wavelength conversion in optical switching network. Journal of Lightwave Technology, 2006, 24(2): 705–712

    Article  Google Scholar 

  5. Liboiron-Ladouceur O, Small B A, Bergman K. Physical layer scalability of WDM optical packet interconnection networks. Journal of Lightwave Technology, 2006, 24(1): 262–270

    Article  Google Scholar 

  6. Tian C, Zhang Z, Ibsen M, Petropoulos P, Richardson D J. Demonstration of a 16-channel code-reconfigurable OCDMA/DWDM system. In: Proceedings of OFC. 2007, OMO

  7. Parmigiani F, Oxenløwe L K, Galili M, Ibsen M, Zibar D, Petropoulos P, Richardson D J, Clausen A T, Jeppesen P. All-optical 160-Gbit/s retiming system using fiber grating based pulse shaping technology. Journal of Lightwave Technology, 2009, 27(9): 132–140

    Article  Google Scholar 

  8. Wang X, Matsushima K, Nishiki A, Wada N, Kitayama K. High reflectivity superstructured FBG for coherent optical code generation and recognition. Optics Express, 2004, 12(22): 5457–5468

    Article  Google Scholar 

  9. Chi N, Xu L, Christiansen L, Yvind K, Zhang J, Holm-Nielsen P, Peucheret C, Zhang C, Jeppesen P. Optical label swapping and packet transmission based on ASK/DPSK orthogonal modulation format in IP-over-WDMnetworks. In: Proceedings of OFC. 2003, 2: 792–794

    Google Scholar 

  10. Yu J, Chang G K, Chowdhury A. Instantaneous clock recovery for burst-mode optical label and payload by using a conventional data receiver. In: Proceedings of OFC. 2005, 3: OWK6

  11. Cao J, Jeon M, Pan Z, Bansal Y, Wang Z, Zhu Z, Hernandez V, Taylor J, Akella V, Yoo S, Okamoto K, Kamei S. Error-free multihop cascaded operation of optical label switching routers with alloptical label swapping. In: Proceedings of OFC. 2003, 2: 791–792

    Google Scholar 

  12. Sasaki K, Sarashina M, Kobayashi S, Tamai H, Nishiki A, Ushikubo T. A new π/2-shift-BPSK signal by superstructure fibre Bragg grating en/decoder. In: Proceedings of ECOC. 2005, 3: 595–596

    Google Scholar 

  13. Sarashina M, Tamai H, Sasaki K, Kashima M. Demonstration of asynchronous ultrahigh speed optical label switching using SSFBGs label recognizer. In: Proceedings of OFC. 2006, JThB56

  14. Parmigiani F, Oxenlowe L K, Galili M, Ibsen M, Zibar D, Petropoulos P, Richardson D J, Clausen A T, Jeppesen P. All-optical 160-Gbit/s RZ data retiming system incorporating a pulse shaping fibre Bragg grating. In: Proceedings of ECOC. 2007, 16–20

  15. Parmigiani F, Petropoulos P, Ibsen M, Richardson D J. Pulse reshaping and retiming systems incorporating pulse shaping fiber Bragg grating. Journal of Lightwave Technology, 2006, 24(1): 357–364

    Article  Google Scholar 

  16. Wang X, Wada N, Miyazaki T, Cincotti G, Kitayama K. Field trial of 3-WDM×10-OCDMA_10.71-Gb/s asynchronous WDM/DPSK-OCDMA using hybrid E/D. Journal of Lightwave Technology, 2007, 25(1): 207–215

    Article  Google Scholar 

  17. Parmigiani F, Finot C, Mukasa K, Ibsen M, Roelens M A F, Petropoulos P, Richardson D. Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating. Optics Express, 2006, 14(17): 7617–7622

    Article  Google Scholar 

  18. Wang X, Matsushima K, Kitayama K, Nishiki A, Wada N, Kubota F. High performance optical code generation and recognition by use of a 511-chip 640-Gchip/s phase-shifted superstructured fiber Bragg grating. Optics Letters, 2005, 30(4): 355–357

    Article  Google Scholar 

  19. Wang X, Matsushima K, Nishiki A, Wada N, Kitayama K. High reflectivity superstructured FBG for coherent optical code generation and recognition. Optics Express, 2004, 12(22): 5457–5468

    Article  Google Scholar 

  20. Wang X, Kataoka N, Wada N, Miyazaki T, Cincotti G, Kitayama K. Flexible 10 Gbps, 8-user DPSK-OCDMA system with 16×16 ports encoder and 16-level phase-shifted SSFBG decoders. In: Proceedings of OFC. 2008, OMR2

  21. Wang X, Kitayama K. Analysis of beat noise in coherent and incoherent time-spreading OCDMA. Journal of Lightwave Technology, 2004, 22(10): 2226–2235

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengguang Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Luo, F., Yu, Z. et al. A novel architecture of optical code label generation and recognition for optical packet switching. Front. Optoelectron. China 3, 347–353 (2010). https://doi.org/10.1007/s12200-010-0118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-010-0118-5

Keywords

Navigation