Skip to main content
Log in

Diffraction of Lorentz-Gauss beam in uniaxial crystals: orthogonal to optical axis

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Based on the diffraction theory of beams in uniaxial crystals, diffraction properties of a Lorentz-Gauss beam in uniaxial crystals orthogonal to the optical axis are derived in analytical forms. Diffraction fields, intensity distributions and effects of beam parameters are investigated by numerical examples, respectively. Results show that, upon propagation, initial field components and intensity distributions of Lorentz-Gauss beams would deteriorate due to effects of anisotropic media. When the Lorentz-Gauss beam diffracts into the far field, its intensity distribution would convert into a four-petal profile. Beam parameters w x and w y are shown to have a strong influence on intensity distributions. By selecting different values of them, profiles of Lorentz-Gauss beams would be different upon propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Casey H C, Panish M B. Heterostructure Lasers. New York: Academic Press, 1978

    Google Scholar 

  2. Dumke W P. The angular beam divergence in doubleheterojunction lasers with very thin active regions. IEEE Journal of Quantum Electronics, 1975, QE-11(7): 400–402

    Article  Google Scholar 

  3. Naqwi A, Durst F. Focusing of diode laser beams: a simple mathematical model. Applied Optics, 1990, 29(12): 1780–1785

    Article  Google Scholar 

  4. Joyce W B, DeLoach B C. Alignment of Gaussian beams. Applied Optics, 1984, 23(23): 4187–4196

    Article  Google Scholar 

  5. Gawhary O E, Severini S. Lorentz beams and symmetry properties in paraxial optics. Journal of Optics A: Pure and Applied Optics, 2006, 8(5): 409–414

    Article  Google Scholar 

  6. Gawhary O E, Severini S. Lorentz beam as a basis for a new class of rectangular symmetric optical fields. Optics Communications, 2007, 269(2): 274–284

    Article  Google Scholar 

  7. Yang J, Chen T, Ding G, Yuan X. Focusing of diode laser beams: a partially coherent Lorentz model. Proceedings of SPIE, 2007, 6824: 68240A

    Article  Google Scholar 

  8. Zhou G. Nonparaxial propagation of a Lorentz-Gauss beam. Journal of the Optical Society of America B, 2009, 26(1): 141–147

    Article  MathSciNet  Google Scholar 

  9. Zhou G. Analytical vectorial structure of a Lorentz-Gauss beam in the far field. Applied Physics B: Lasers and Optics, 2008, 93(4): 891–899

    Article  Google Scholar 

  10. Zhou G. Focal shift of focused truncated Lorentz-Gauss beam. Journal of the Optical Society of America A, 2008, 25(10): 2594–2599

    Article  Google Scholar 

  11. Zhou G. Fractional Fourier transform of Lorentz-Gauss beams. Journal of the Optical Society of America A, 2009, 26(2): 350–355

    Article  Google Scholar 

  12. Zhou G, Chu X. Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere. Optics Express, 2010, 18(2): 726–731

    Article  Google Scholar 

  13. Zhou G. Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system. Optics Express, 2010, 18(5): 4637–4643

    Article  Google Scholar 

  14. Born M, Wolf E. Principles of Optics. Oxford: Pergamon Press, 1999

    Google Scholar 

  15. Ciattoni A, Palma C. Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond. Journal of the Optical Society of America A, 2003, 20(11): 2163–2171

    Article  Google Scholar 

  16. Ciattoni A, Palma C. Nondiffracting beams in uniaxial media propagating orthogonally to the optical axis. Optics Communications, 2003, 224(4–6): 175–183

    Article  Google Scholar 

  17. Ciattoni A, Palma C. Anisotropic beam spreading in uniaxial crystals. Optics Communications, 2004, 231(1–6): 79–92

    Article  Google Scholar 

  18. Liu D, Zhou Z. Various dark hollow beams propagating in uniaxial crystals orthogonal to the optical axis. Journal of Optics A: Pure and Applied Optics, 2008, 10(9): 095005

    Article  Google Scholar 

  19. Liu D, Zhou Z. Propagation of partially polarized, partially coherent beams in uniaxial crystals orthogonal to the optical axis. European Physical Journal D, 2009, 54(1): 95–101

    Article  Google Scholar 

  20. Liu D, Zhou Z. Propagation of partially coherent flat-topped beams in uniaxial crystals orthogonal to the optical axis. Journal of the Optical Society of America A, 2009, 26(4): 924–930

    Article  Google Scholar 

  21. Tang B. Hermite-cosine-Gaussian beams propagating in uniaxial crystals orthogonal to the optical axis. Journal of the Optical Society of America A, 2009, 26(12): 2480–2487

    Article  Google Scholar 

  22. Ciattoni A, Cincotti G, Palma C. Ordinary and extraordinary beams characterization in uniaxially anisotropic crystals. Optics Communications, 2001, 195(1–4): 55–61

    Article  Google Scholar 

  23. Ciattoni A, Crosignani B, Di Porto P. Vectorial theory of propagation in uniaxially anisotropic media. Journal of the Optical Society of America A, 2001, 18(7): 1656–1661

    Article  Google Scholar 

  24. Ciattoni A, Cincotti G, Provenziani D, Palma C. Paraxial propagation along the optical axis of a uniaxial medium. Physical Review E, 2002, 66(3): 036614

    Article  Google Scholar 

  25. Ciattoni A, Cincotti G, Palma C. Propagation of cylindrically symmetric fields in uniaxial crystals. Journal of the Optical Society of America A, 2002, 19(4): 792–796

    Article  MathSciNet  Google Scholar 

  26. Cincotti G, Ciattoni A, Palma C. Laguerre-Gauss and Bessel-Gauss beams in uniaxial crystals. Journal of the Optical Society of America A, 2002, 19(8): 1680–1688

    Article  MathSciNet  Google Scholar 

  27. Tang B, Jin Y, Jiang M, Jiang X. Diffraction properties of four-petal Gaussian beams in uniaxially anisotropic crystal. Chinese Optics Letters, 2008, 6(10): 779–781

    Article  Google Scholar 

  28. Schmidt P P. A method for the convolution of lineshapes which involve the Lorentz distribution. Journal of Physics B, 1976, 9(13): 2331–2339

    Article  Google Scholar 

  29. Abramowitz M, Stegun I A. Handbook of Mathematical Functions. New York: Dover Publication, 1972

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Chen, Y., Xu, S. et al. Diffraction of Lorentz-Gauss beam in uniaxial crystals: orthogonal to optical axis. Front. Optoelectron. China 3, 292–302 (2010). https://doi.org/10.1007/s12200-010-0111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-010-0111-z

Keywords

Navigation