Skip to main content
Log in

Fully transparent flexible transistors built on metal oxide nanowires

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Transparent electronics has attracted great research efforts in recent years due to its potential to make significant impact in many area, such as next generation displays, ultraviolet (UV) detectors, solar cells, charge-coupled devices (CCDs), and so on. Central to the realization of transparent electronics is the development of high performance fully transparent thin-film transistors (TFTs). One-dimensional (1-D) nanostructures have been the focus of current researches due to their unique physical properties and potential applications in nanoscale electronics and optoelectronics. Among 1-D nanostructures, transparent metal oxide nanowires are one of the best candidates to make fully transparent TFTs. We provide in this paper the most recent development on the fabrication of fully transparent TFT using metal oxide nanowires as the device elements. First, the review article gives a general introduction about the development of transparent electronics using different kinds of materials as the devices elements, including organic semiconductors, metal oxide thin films, and metal oxide nanowires. Second, the growth of metal oxide nanowires using vapor phase methods governed by two different growth mechanisms: vaporsolid mechanism and vapor-liquid-solid mechanism, respectively, are described. Third, the fabrication of transparent and flexible TFTs using different metal oxides nanowires is comprehensively described. In conclusion, the challenges and prospects for the future are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wager J F. Transparent electronics. Science, 2003, 300(5623): 1245–1246

    Article  Google Scholar 

  2. Wagner J F, Keszler D A, Presley R E. Transparent Electronics. New York: Springer, 2008

    Google Scholar 

  3. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H. P-type electrical conduction in transparent thin films of CuAlO2. Nature, 1997, 389(6654): 939–942

    Article  Google Scholar 

  4. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488–492

    Article  Google Scholar 

  5. Chiang H Q, Wager J F, Hoffman R L, Jeong J, Keszler D A. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layers. Applied Physics Letters, 2005, 86(1): 013503

    Article  Google Scholar 

  6. Görrn P, Sander M, Meyer J, Kroger M, Becker E, Johannes H H, Kowalsky W, Riedl T. Towards see-through displays: fully transparent thin-film transistors driving transparent organic lightemitting diodes. Advanced Materials, 2006, 18(6): 738–741

    Article  Google Scholar 

  7. Wang L, Yoon M H, Lu G, Yang Y, Facchetti A, Marks T J. Highperformance transparent inorganic-organic hybrid thin-film n-type transistors. Nature Materials, 2006, 5(11): 893–900

    Article  Google Scholar 

  8. Lin Y Y, Gundlach D J, Nelson S, Jackson T N. Stacked pentacene layer orgainc thin-film transistors with improved characteristics. IEEE Electron Device Letters, 1997, 18(12): 606–608

    Article  Google Scholar 

  9. Bao Z, Lovinger A J, Dodabalapur A. Organic field-effect transistors with high mobility based on copper phthalocyanine. Applied Physics Letters, 1996, 69(20): 3066–3068

    Article  Google Scholar 

  10. Katz H E. Organic molecular solids as thin film transistor semiconductors. Journal of Materials Chemistry, 1997, 7(3): 369–376

    Article  Google Scholar 

  11. Horowitz G. Organic field-effect transistors. Advanced Materials, 1998, 10(5): 365–377

    Article  Google Scholar 

  12. Garnier F. Thin film transistors based on organic conjugated semiconductors. Chemical Physics, 1998, 227(1–2): 253–262

    Article  Google Scholar 

  13. Choi Y W, Kim I D, Tuller H L, Akinwande A I. Low-voltage organic transistors and depletion-load inverters with high-K pyrochlore BZN gate dielectric on polymer substrate. IEEE Transactions on Electron Devices, 2005, 52(12): 2819–2824

    Article  Google Scholar 

  14. Tsumura A, Koezuka H, Ando T. Macromolecular electronic devices: field-effect transistor with a polythiophene thin film. Applied Physics Letters, 1986, 49(18): 1210–1212

    Article  Google Scholar 

  15. Klauk H, Halik M, Zschieschang U, Eder F, Rohde D, Schmid G, Dehm C. Flexible organic complementary circuits. IEEE Transactions on Electron Devices, 2005, 52(4): 618–622

    Article  Google Scholar 

  16. Na J H, Kitamura M, Lee D, Arakawa Y. High performance flexible pentacene thin-film transistors fabricated on titanium silicon oxide gate dielectrics. Applied Physics Letters, 2007, 90(16): 163514

    Article  Google Scholar 

  17. Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonçalves A M F, Marques A J S, Pereira L M N, Martins R F P. Fully transparent ZnO thin-film transistor produced at room temperature. Advanced Materials, 2005, 17(5): 590–594

    Article  Google Scholar 

  18. Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science, 2003, 300(5623): 1269–1272

    Article  Google Scholar 

  19. Hosono H. Transparent amorphous oxide semiconductors for high performance TFT. SID Symposium Digest of Technical Papers, 2007, 38(1): 1830–1833

    Article  Google Scholar 

  20. Presley R E, Munsee C L, Park C, Hong D, Wager J F, Keszler D A. Tin oxide transparent thin-film transistors. Journal of Physics D, 2004, 37(20): 2810–2813

    Article  Google Scholar 

  21. Görrn P, Holzer P, Riedl T, Kowalsky W, Wang J, Weimann T, Hinze P, Kipp S. Stability of transparent zinc tin oxide transistors under bias stress. Applied Physics Letters, 2007, 90(6): 063502

    Article  Google Scholar 

  22. Narushima S, Orita M, Hirano M, Hosono H. Electronic structure and transport properties in the transparent amorphous oxide semiconductor 2CdO·GeO2. Physical Review B: Condensed Matter and Materials Physics, 2002, 66(3): 035203

    Google Scholar 

  23. Grover M S, Hersh P A, Chiang H Q, Kettenring E S, Wager J F, Keszler D A. Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer. Journal of Physics D, 2007, 40(5): 1335–1338

    Article  Google Scholar 

  24. Kumomi H, Nomura K, Kamiya T, Hosono H. Amorphous oxide channel TFTs. Thin Solid Films, 2008, 516(7): 1516–1522

    Article  Google Scholar 

  25. Shen G Z, Chen P C, Ryu K, Zhou C. Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 2009, 19(7): 828–839

    Article  Google Scholar 

  26. Curreli M, Li C, Sun Y, Lei B, Gundersen M A, Thompson M E, Zhou C. Selective functionalization of In2O3 nanowire mat devices for biosensing applications. Journal of the American Chemical Society, 2005, 127(19): 6922–6923

    Article  Google Scholar 

  27. Tian B, Zheng X, Kempa T J, Fang Y, Yu N, Yu G, Huang J, Lieber C M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449(7164): 885–889

    Article  Google Scholar 

  28. Qian F, Li Y, Gradecak S, Park H G, Dong Y, Ding Y, Wang Z L, Lieber C M. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Materials, 2008, 7(9): 701–706

    Article  Google Scholar 

  29. Law M, Greene L E, Johnson J C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455–459

    Article  Google Scholar 

  30. Wang Z L. Nanowires and Nanobelts: Materials, Properties and Devices. Boston: Kluwer Academic Publishers, 2003

    Book  Google Scholar 

  31. Li Y, Qian F, Xiang J, Lieber C M. Nanowire electronic and optoelectronic devices. Materials Today, 2006, 9(10): 18–27

    Article  Google Scholar 

  32. Meindl J D, Chen Q, Davis J A. Limits on silicon nanoelectronics for terascale integration. Science, 2001, 293(5537): 2044–2049

    Article  Google Scholar 

  33. Shen G Z, Chen D, Chen P C, Zhou C. Vapor-solid growth of one-dimensional layer-structured gallium sulfide nanostructures. ACS Nano, 2009, 3(5): 1115–1120

    Article  Google Scholar 

  34. Chen P C, Shen G Z, Zhou C. Chemical sensors and electronic noses based on 1-D metal oxide nanostructures. IEEE Transactions on Nanotechnology, 2008, 7(6): 668–682

    Article  Google Scholar 

  35. Zhang J, Chen P C, Shen G Z, He J B, Kumbhar A, Zhou C, Fang J. P-type field-effect transistors of single-crystal zinc telluride nanobelts. Angewandte Chemie International Edition, 2008, 47(49): 9469–9471

    Article  Google Scholar 

  36. Shen G Z, Chen D. Self-coiling of Ag2V4O11 nanobelts into perfect nanorings and microloops. Journal of the American Chemical Society, 2006, 128(36): 11762–11763

    Article  Google Scholar 

  37. Cui Y, Wei Q, Park H, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289–1292

    Article  Google Scholar 

  38. Huang Y, Duan X, Cui Y, Lauhon L J, Kim K H, Lieber CM. Logic gates and computation from assembled nanowire building blocks. Science, 2001, 294(5545): 1313–1317

    Article  Google Scholar 

  39. Shen G Z, Bando Y, Hu J Q, Golberg D. High-symmetry ZnS heptaand tetrapods composed of assembled ZnS nanowire arrays. Applied Physics Letters, 2007, 90(12): 123101

    Article  Google Scholar 

  40. Law M, Kind H, Messer B, Kim F, Yang P. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie International Edition, 2002, 41(13): 2405–2408

    Article  Google Scholar 

  41. Kolmakov A, Moskovits M. Chemical sensing and catalysis by onedimensional nanostructures. Annual Review of Materials Research, 2004, 34: 151–180

    Article  Google Scholar 

  42. Shen G Z, Bando Y, Ye C H, Yuan X L, Sekiguchi T, Golberg D. Single-crystal nanotubes of II3-V2 semiconductors. Angewandte Chemie International Edition, 2006, 45(45): 7568–7572

    Article  Google Scholar 

  43. Duan X, Huang Y, Agarwal R, Lieber C M. Single-nanowire electrically driven lasers. Nature, 2003, 421(6920): 241–245

    Article  Google Scholar 

  44. Zhong Z, Qian F, Wang D, Lieber C M. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Letters, 2003, 3(3): 343–346

    Article  Google Scholar 

  45. Zhong Z, Wang D, Cui Y, Bockrath M W, Lieber C M. Nanowire crossbar arrays as address decoders for integrated nanosystems. Science, 2003, 302(5649): 1377–1379

    Article  Google Scholar 

  46. Cao Q, Hur S H, Zhu Z T, Sun Y, Wang C J, Meitl M A, Shim M, Rogers J A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Advanced Materials, 2006, 18(3): 304–309

    Article  Google Scholar 

  47. Ishikawa F N, Chang H K, Ryu K, Chen P C, Badmaev A, Gomez De Arco L, Shen G Z, Zhou C W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano, 2009, 3(1): 73–79

    Article  Google Scholar 

  48. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 2008, 3(5): 270–274

    Article  Google Scholar 

  49. Artukovic E, Kaempgen M, Hecht D S, Roth S, Grüner G. Transparent and flexible carbon nanotube transistors. Nano Letters, 2005, 5(4): 757–760

    Article  Google Scholar 

  50. Tseng S H, Tai N H. Fabrication of a transparent and flexible thin film transistor based on single-walled carbon nanotubes using the direct transfer method. Applied Physics Letters, 2009, 95(20): 204104

    Article  Google Scholar 

  51. Bae E J, Min Y S, Kim U J, Park WJ. Thin film transistors of singlewalled carbon nanotubes grown directly on glass substrates. Nanotechnology, 2007, 18(49): 495203

    Article  Google Scholar 

  52. Dai Z R, Pan Z W, Wang Z L. Ultra-long single crystalline nanoribbons of tin oxide. Solid State Communications, 2001, 118(7): 351–354

    Article  Google Scholar 

  53. Shen G Z, Bando Y, Lee C J. Growth of self-organized hierarchical ZnO nanoarchitectures by a simple thermal evaporation process. Journal of Physical Chemistry B, 2005, 109(21): 10779–10785

    Article  Google Scholar 

  54. Shen G Z, Bando Y, Lee C J. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. Journal of Physical Chemistry B, 2005, 109(21): 10578–10583

    Article  Google Scholar 

  55. Shen G Z, Cho J H, Lee C J. Morphology-controlled synthesis, growth mechanism and optical properties of ZnO nanonails. Chemical Physics Letters, 2005, 401(4–6): 414–419

    Article  Google Scholar 

  56. Shen G Z, Bando Y, Chen D, Liu B, Zhi C, Golberg D. Morphology-controlled synthesis of ZnO nanostructures by a simple round-to-round metal vapor deposition route. Journal of Physical Chemistry B, 2006, 110(9): 3973–3978

    Article  Google Scholar 

  57. Shen G Z, Bando Y, Liu B, Golberg D, Lee C J. Characterization and field-emission properties of vertically-aligned ZnO nanonails and nanopencils fabricated by a modified thermal evaporation process. Advanced Functional Materials, 2006, 16(3): 410–416

    Article  Google Scholar 

  58. Liu Z, Zhang D, Han S, Li C, Tang T, Jin W, Liu X, Lei B, Zhou C. Laser ablation synthesis and electronic transport studies of tin oxide nanowires. Advanced Materials, 2003, 15(20): 1754–1757

    Article  Google Scholar 

  59. Li C, Zhang D, Han S, Liu X, Tang T, Zhou C. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Advanced Materials, 2003, 15(2): 143–146

    Article  Google Scholar 

  60. Dattoli E N, Wan Q, Guo W, Chen Y, Pan X, Lu W. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Letters, 2007, 7(8): 2463–2469

    Article  Google Scholar 

  61. Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C W, Marks T J, Janes D B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature Nanotechnology, 2007, 2(6): 378–384

    Article  Google Scholar 

  62. Ju S, Li J, Liu J, Chen P C, Ha Y G, Ishikawa F N, Chang H K, Zhou C, Facchetti A, Janes D B, Marks T J. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. Nano Letters, 2008, 8(4): 997–1004

    Article  Google Scholar 

  63. Dattoli E N, Kim K H, Fung W Y, Choi S Y, Lu W. Radiofrequency operation of transparent nanowire thin-film transistors. IEEE Electron Device Letters, 2009, 30(7): 730–732

    Article  Google Scholar 

  64. Zhang WF, He Z B, Yuan G D, Jie J S, Luo L B, Zhang X J, Chen Z H, Lee C S, Zhang W J, Lee S T. High-performance, fully transparent, and flexible zinc-doped indium oxide nanowire transistors. Applied Physics Letters, 2009, 94(12): 123103

    Article  Google Scholar 

  65. Chen P C, Shen G Z, Chen H, Ha Y G, Wu C, Sukcharoenchoke S, Fu Y, Liu J, Facchetti A, Marks T J, Thompson M E, Zhou C. Highperformance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. ACS Nano, 2009, 3(11): 3383–3390

    Article  Google Scholar 

  66. Chen P C, Shen G Z, Sukcharoenchoke S, Zhou C. Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films. Applied Physics Letters, 2009, 94(4): 043113

    Article  Google Scholar 

  67. O’Dwyer C, Szachowicz M, Visimberga G, Lavayen V, Newcomb S B, Torres C M. Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. Nature Nanotechnology, 2009, 4(4): 239–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhen Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Xu, J. & Shen, G. Fully transparent flexible transistors built on metal oxide nanowires. Front. Optoelectron. China 3, 217–227 (2010). https://doi.org/10.1007/s12200-010-0110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-010-0110-0

Keywords

Navigation