Skip to main content
Log in

Circuit modeling of quantum dot semiconductor optical amplifier

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

A circuit model of a quantum dot semiconductor optical amplifier is proposed by employing standard rate equations. Using this model, the saturation property and dynamic performance of the quantum dot semiconductor optical amplifier are analyzed by PSPICE simulation. We also investigate wavelength conversion based on cross-gain modulation for the quantum dot semiconductor optical amplifier. The corresponding results are in agreement with the previous published works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asada M, Miyamoto Y, Suematsu Y. Gain and the threshold of three-dimensional quantum-box lasers. IEEE Journal of Quantum Electronics, 1986, QE-22(9): 1915–1921

    Article  Google Scholar 

  2. Willatzen M, Tanaka T, Arakawa Y, Singh J. Polarization dependence of optoelectronic properties in quantum dots and quantum wires-consequences of valence-band mixing. IEEE Journal of Quantum Electronics, 1994, 30(3): 640–653

    Article  Google Scholar 

  3. Bhattacharya P. Self-organized quantum dots. Journal of Physics D, 2005, 38(13): 2055–2150

    Article  Google Scholar 

  4. Huang X, Stintz A, Li H, Lester L F, Cheng J, Malloy K J. Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers. Applied Physics Letters, 2001, 78(19): 2825–2827

    Article  Google Scholar 

  5. Ben-Ezra Y, Haridim M, Lembrikov B I. Theoretical analysis of gain-recovery time and chirp in QD-SOA. IEEE Photonics Technology Letters, 2005, 17(19): 1803–1805

    Article  Google Scholar 

  6. Li X X, Li G F. Comments on “theoretical analysis of gain-recovery time and chirp in QD-SOA”. IEEE Photonics Technology Letters, 2006, 18(22): 2434–2435

    Article  Google Scholar 

  7. Huang L R, Yu Y, Tian P, Huang D X. Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier. Semiconductor Science and Technology, 2009, 24(1): 1–7

    Google Scholar 

  8. Li X X, Li G F. Static gain, optical modulation response, and nonlinear phase noise in saturated quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2009, 45(5): 499–505

    Article  Google Scholar 

  9. Uskov A V, O’Reilly E P, Laemmlin M, Ledentsov N N, Bimberg D. On gain saturation in quantum dot semiconductor optical amplifiers. Optics Communications, 2005, 248(1–3): 211–219

    Article  Google Scholar 

  10. Sugawara M, Mukai K, Nakata Y, Ishikawa H, Sakamoto A. Effect of homogeneous broadening of optical gain on lasing spectra in selfassembled InxGa1−x As/GaAs quantum dot lasers. Physical Review B: Condensed Matter and Materials Physics, 2001, 61(11): 7595–7603

    Google Scholar 

  11. Manning R J, Ellis A D, Poustie A J, Blow K J. Semiconductor laser amplifiers for ultrafast all-optical signal processing. Journal of the Optical Society of America B: Optical Physics, 1997, 14(11): 3204–3216

    Article  Google Scholar 

  12. Cotter D, Manning R J, Blow K J, Ellis A D, Kelly A E, Nesset D, Phillips I D, Poustie A J, Rogers D C. Nonlinear optics for high speed digital information processing. Science, 1999, 286(5444): 1523–1528

    Article  Google Scholar 

  13. Mena P V, Kang S M, Temple T A D. Rate-equation-based laser models with a single solution regime. Journal of Lightwave Technology, 1997, 15(4): 717–730

    Article  Google Scholar 

  14. Mena P V. Circuit-level modeling and simulation of semiconductor lasers. Dissertation for the Doctoral Degree, University of Illinois at Chicago, 1998

  15. Jou J J, Liu C K, Lee S L. A unified circuit model for static and dynamic analyses of semiconductor optical amplifiers and laser diodes. Solid-State Electronics, 2007, 51(3): 360–365

    Article  Google Scholar 

  16. Lu M F, Deng J S, Juang C, Jou M J, Lee B J. Equivalent circuit model of quantum well lasers. IEEE Journal of Quantum Electronics, 1995, 31(8): 418–1422

    Google Scholar 

  17. Yavari M H, Ahmadi V. Circuit-level implementation of semiconductor self-assembled quantum dot laser. IEEE Journal on Selected Topics in Quantum Electronics, 2009, 15(3): 774–779

    Google Scholar 

  18. Maram R, Baghban H, Rasooli H, Ghorbani R, Rostami A. Equivalent circuit model of quantum dot semiconductor optical amplifiers: dynamic behaviour and saturation properties. Journal of Optics A: Pure and Applied Optics, 2009, 11(10): 105205

    Article  Google Scholar 

  19. Gioannini M, Montrosset I. Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers. IEEE Journal of Quantum Electronics, 2007, 43(10): 941–949

    Article  Google Scholar 

  20. Berg T W, Bischoff S, Magnusdottir I, Mork J. Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photonics Technology Letters, 2001, 13(6): 541–543

    Article  Google Scholar 

  21. Ben-Ezra Y, Lembrikov B I, Haridim M. Acceleration of gain recovery and dynamics of electrons in QD-SOA. IEEE Journal of Quantum Electronics, 2005, 41(10): 1268–1273

    Article  Google Scholar 

  22. Kim J, Kondratko P K, Chuang S L, Walter G, Holonyak N, Heller R D, Zhang X B, Dupuis R D. Tunneling injection quantum-dot lasers with polarization-dependent photon-mediated carrier redistribution and gain narrowing. IEEE Journal of Quantum Electronics, 2005, 41(11): 1369–1379

    Article  Google Scholar 

  23. Houbavlis T, Zoiros K E, Kalyvas M, Theophilopoulos G, Bintjas C, Yiannopoulos K, Pleros N, Vlachos K, Avramopoulos H, Schares L, Occhi L, Guekos G, Taylor J R, Hansmann S, Miller W. Alloptical signal processing and applications within the esprit project DO_ALL. Journal of Lightwave Technology, 2005, 23(2): 781–801

    Article  Google Scholar 

  24. Uskov A V, Mork J, Tromborg B, Berg T W, Magnusdottir I, O’Reilly E P. On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers. Optics Communications, 2003, 227(4–5): 363–369

    Article  Google Scholar 

  25. Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2009, 45(3): 240–248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lirong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Huang, L., Xiong, M. et al. Circuit modeling of quantum dot semiconductor optical amplifier. Front. Optoelectron. China 3, 232–240 (2010). https://doi.org/10.1007/s12200-010-0101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-010-0101-1

Keywords

Navigation