Skip to main content
Log in

Deep notch filter based on liquid-filled photonic crystal fiber

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

A deep notch filter in a liquid-filled photonic bandgap fiber (PBGF) realized via filling an erbium-doped solid core photonic crystal fiber with high-index liquid is proposed and demonstrated. The numerical investigation indicates that the notch is formed due to avoid-crossing effect between the fundamental mode and LP02 supermodes. The resonance wavelength of the filter can be tuned by adjusting the temperature of the liquid-filled PBGF and shifts toward short wavelength. The blue-shift speed average is 1.3 nm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963

    Article  Google Scholar 

  2. Knight J C, Broeng J, Birks T A, Russell P S J. Photonic band gap guidance in optical fibers. Science, 1998, 282(5393): 1476–1478

    Article  Google Scholar 

  3. Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A, Russell P S J. Highly birefringent photonic crystal fibers. Optics Letters, 2000, 25(18): 1325–1327

    Article  Google Scholar 

  4. Zou B, Liu Y, Du J, Wang Z, Han T, Xu J, Li Y, Liu B. Transmission bandwidth tunability of a liquid-filled photonic bandgap fiber. Chinese Physics Letters, 2009, 26(4): 044210

    Article  Google Scholar 

  5. Kerbage C, Steinvurzel P, Reyes P, Westbrook P S, Windeler R S, Hale A, Eggleton B J. Highly tunable birefringent microstructured optical fiber. Optics Letters, 2002, 27(10): 842–844

    Article  Google Scholar 

  6. Larsen T T, Bjarklev A, Hermann D S, Broeng J. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 2003, 11(20): 2589–2596

    Article  Google Scholar 

  7. Haakestad M W, Alkeskjold T T, Nielsen M D, Scolari L, Riishede J, Engan H E, Bjarklev A. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photonics Technology Letters, 2005, 17(4): 819–821

    Article  Google Scholar 

  8. Du J, Liu Y, Wang Z, Zou B, Liu B, Dong X. Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused. Optics Letters, 2008, 33(19): 2215–2217

    Article  Google Scholar 

  9. Noordegraaf D, Scolari L, Lægsgaard J, Rindorf L, Alkeskjold T T. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Optics Express, 2007, 15(13): 7901–7912

    Article  Google Scholar 

  10. Noordegraaf D, Scolari L, Laegsgaard J, Tanggaard Alkeskjold T, Tartarini G, Borelli E, Bassi P, Li J, Wu S T. Avoided-crossing-based liquid-crystal photonic-bandgap notch filter. Optics Letters, 2008, 33(9): 986–988

    Article  Google Scholar 

  11. Johnson S, Joannopoulos J. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173–190

    Article  Google Scholar 

  12. Koshiba M. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Transactions on Electronics, 2002, E85-C(4): 881–888

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yange Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, B., Liu, Y., Wang, Z. et al. Deep notch filter based on liquid-filled photonic crystal fiber. Front. Optoelectron. China 3, 289–291 (2010). https://doi.org/10.1007/s12200-010-0100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-010-0100-2

Keywords

Navigation