Skip to main content
Log in

Use of adaptive RLS, LMS, and NLMS algorithms for nonlinearity modeling in a modified laser interferometer

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Laser heterodyne interferometer is one kind of nano-metrology systems which has been widely used in industry for high-accuracy displacement measurements. The accuracy of the nano-metrology systems based on the laser heterodyne interferometers can be effectively limited by the periodic nonlinearity. In this paper, we present the nonlinearity modeling of the nano-metrology interferometric system using some adaptive filters. The adaptive algorithms consist of the least mean squares (LMS), normalized least mean squares (NLMS), and recursive least squares (RLS). It is shown that the RLS algorithm can obtain optimal modeling parameters of nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schattenburg M L, Smith H I. The critical role of metrology in nanotechnology. Proceedings of the SPIE, 2002, 4608: 116–124

    Article  Google Scholar 

  2. Pieter B. Optical lithography to 2000 and beyond. Solid State Technology, 1999, 42(2): 31–41

    Google Scholar 

  3. Lawall J, Kessler E. Michelson interferometry with 10 pm accuracy. Review of Scientific Instruments, 2000, 71(7): 2669–2676

    Article  Google Scholar 

  4. Demarest F C. High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics. Measurement Science and Technology, 1998, 9(7): 1024–1030

    Article  Google Scholar 

  5. Rosenbluth A E, Bobroff N. Optical sources of nonlinearity in heterodyne interferometers. Precision Engineering, 1990, 12(1): 7–11

    Article  Google Scholar 

  6. Sutton C M. Non-linearity in length measurement using heterodyne laser Michelson interferometry. Physics E: Scientific Instruments, 1987, 20(10): 1290–1292

    Article  Google Scholar 

  7. Cosijns S J A G, Haitjema H, Schellekens P H J. Modeling and verifying non-linearities in heterodyne displacement interferometry. Precision Engineering, 2002, 26(4): 448–455

    Article  Google Scholar 

  8. De Feritas JM. Analysis of laser source birefringence and dichorism on nonlinearity in hetrodyne interferometry. Measurement Science and Technology, 1997, 8(11): 1356–1359

    Article  Google Scholar 

  9. Hou W. Optical parts and the nonlinearity in heterodyne interferometers. Precision Engineering, 2006, 30(3): 337–346

    Article  Google Scholar 

  10. Meyers J F, Lee J W, Schwartz R J. Characterization of measurement error sources in Doppler global velocimetry. Measurement Science and Technology, 2001, 12(4): 357–368

    Article  Google Scholar 

  11. Schmitz T, Beckwith J F. An investigation of two unexplored periodic error sources in differential-path interferometry. Precision Engineering, 2003, 27(3): 311–322

    Article  Google Scholar 

  12. Olyaee S, Yoon T H, Hamedi S. Jones matrix analysis of frequency mixing error in three-longitudinal-mode laser heterodyne interferometer. IET Optoelectronics, 2009, 3(5): 215–224

    Article  Google Scholar 

  13. Olyaee S, Nejad SM. Nonlinearity and frequency-path modelling of three-longitudinal-mode nanometric displacement measurement system. IET Optoelectronics, 2007, 1(5): 211–220

    Article  Google Scholar 

  14. Olyaee S, Nejad S M. Error analysis, design and modeling of an improved heterodyne nano-displacement interferometer. Iranian Journal of Electrical and Electronic Engineering, 2007, 3(3–4): 53–63

    Google Scholar 

  15. Badami V G, Patterson S R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precision Engineering, 2000, 24(1): 41–49

    Article  Google Scholar 

  16. Olyaee S, Nejad S M. Reduction of non-orthogonality effect in nanometrology system by modified optics and signal conditioner. In: Proceedings of IEEE 6th Symposium on Communication Systems, Networks and Digital Signal Processing. 2008, 626–629

  17. Heo G, Lee W, Choi S, Lee J, You K. Adaptive neural network approach for nonlinearity compensation in laser interferometer. Lecture Notes in Computer Science, 2007, 4694: 251–258

    Article  Google Scholar 

  18. Lee S C, Heo G H, You K H. Adaptive TLS approach for nonlinearity compensation in laser interferometer. International Journal of Control and Automation, 2009, 2(1): 31–40

    Google Scholar 

  19. Widrow B, Stearns S D. Adaptive Signal Processing. Englewood Cliffs: Prentice-Hall, 1985

    MATH  Google Scholar 

  20. Widrow B, Hoff M E. Adaptive switching circuits. IRE WESCON Convention Record, 1960, 4: 96–140

    Google Scholar 

  21. Haykin S. Adaptive Filter Theory. Englewood Cliffs: Prentice-Hall, 2002

    Google Scholar 

  22. Treichler J R, Johnson C R Jr, Larimore M G. Theory and Design of Adaptive Filters. Englewood Cliffs: Prantice-Hall, 2001

    Google Scholar 

  23. Widrow B, McCool J M, Larimore M G, Johnson C R Jr. Stationary and nonstationary learning characteristics of the LMS adaptive filter. Proceedings of the IEEE, 1976, 64: 1151–1162

    Article  MathSciNet  Google Scholar 

  24. Olyaee S, Abadi M S E, Hamedi S, Finizadeh F. Adaptive RLS algorithm for nonlinearity modeling in the nanometrology system. In: Proceedings of the 18th ICEE Conference, Isfahan, Iran. 2010

  25. Guo J, Zhang Y, Shen S. Compensation of nonlinearity in a new optical heterodyne interferometer with doubled measurement resolution. Optics Communications, 2000, 184(1–4): 49–55

    Article  Google Scholar 

  26. Olyaee S, Ebrahimpour R, Hamedi S. Modeling and compensation of periodic nonlinearity in two-mode interferometer using neural networks. IETE Journal of Research, 2010, 56(2): 102–110

    Article  Google Scholar 

  27. Olyaee S, Hamedi S. A low-nonlinearity laser heterodyne interferometer with quadrupled resolution in the displacement measurement. The Arabian Journal for Science and Engineering, 2010 (in press)

  28. Olyaee S, Hamedi S. Correction of nonlinearity in high-resolution nano-displacement measurements. In: Proceedings of IEEE 5th International Symposium on High-Capacity Optical Networks and Enabling Technologies HONET. 2008, 116–119

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olyaee, S., Abadi, M.S.E., Hamedi, S. et al. Use of adaptive RLS, LMS, and NLMS algorithms for nonlinearity modeling in a modified laser interferometer. Front. Optoelectron. China 3, 264–269 (2010). https://doi.org/10.1007/s12200-010-0095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-010-0095-8

Keywords

Navigation