Skip to main content
Log in

Challenges of spatial 3D display techniques to optoelectronics

  • Review Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

In the development of flat panel display techniques and digital image processing techniques, the data processing ability progresses so greatly, and it makes the three-dimensional display (3D display) possible. Recently, the 3D display technique develops so fast, it changes totally the traditional 3D viewing effect and makes 3D display become a possible technique in our daily life. In this paper, the different 3D techniques will be reviewed, and much more focus on the real spatial 3D display techniques, especially the challenges of the high-quality spatial 3D display to the optoelectronics will be analyzed, which will be the sources for the future ideal 3D display technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wheatstone C. Contribution to the Physiology of Vision. London: Philosophical Transaction of the Royal society of London, 1938

    Google Scholar 

  2. Ives F E. US Patent, 725567, 1903-04-14

  3. Isono H, Yasuda M, Kusaka H, Morita T. 3D flat-panel displays without glasses. In: Proceedings of the Society for Information Display. 1990, 31(3): 263–266

    Google Scholar 

  4. Gabor D. Microscopy by recorded wavefronts. In: Proceedings of the Royal Society. 1949, 446–469

  5. Tay S, Yamamoto M, Peyghambarian N. An updateable holographic 3-D display based on photorefractive polymers. In: Proceedings of SID International Symposium. 2008, 356

  6. Parker E, Wallis P A. Three-dimensional cathode-ray tube displays. The Journal of the Institution of Electrical Engineers, 1948, 95, Part III: 371–390

    Google Scholar 

  7. Langhans K, Bahr D, Bezecny D, Homann D, Oltmann K, Oltmann K, Guill C, Rieper E, Ardey G. FELIX 3D display: an interactive tool for volumetric imaging. Proceedings of SPIE, 2002, 4660: 176–190

    Article  Google Scholar 

  8. Davies N, McCormick M, Yang L. Three-dimensional imaging systems: a new development. Applied Optics, 1988, 27(21): 4520–4528

    Article  Google Scholar 

  9. Hines S P. Autostereoscopic video display with motion parallax. Proceedings of SPIE, 1997, 3012: 208–219

    Article  Google Scholar 

  10. van Berkel C. Image preparation for 3D-LCD. Proceedings of SPIE, 1999, 3639: 84–91

    Article  Google Scholar 

  11. Lipton L. US Patent, 6519088, 2002-2-11

  12. De Zwart S T, Ijzerman W L, Dekker T, Wolter W A M. A 20″ switchable auto-stereoscopic 2D/3D display. In: Proceedings of the 11th International Conference on Auditory Display. 2004, 11: 1459–1460

    Google Scholar 

  13. Kim S S, Sohn K H, Savaljev V, Pen E F, Son J Y, Chun J H. Optical design and analysis for super multiview three-dimensional imaging system. Proceedings of SPIE, 2001, 4297: 222–226

    Article  Google Scholar 

  14. Tay S, Blanche P A, Voorakaranam R, Tuns A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. An updatable holographic three-dimensional display. Nature, 2008, 451(7179): 694–698

    Article  Google Scholar 

  15. Bahr D, Langhans K, Gerken M, Vogt C, Bezecny D, Homann D. Felix: a volumetric 3D laser display. Proceedings of SPIE, 1996, 2650: 265–273

    Article  Google Scholar 

  16. Texas Instruments. The DLP Discovery 4000, 2008

  17. Favalora G E, Dorval R K, Hall D M, Giovinco M, Napoli J. Volumetric three-dimensional display system with rasterization hardware. Proceedings of SPIE, 2001, 4297: 227–235

    Article  Google Scholar 

  18. Perspecta. Actuality Systems, Inc., Burlington, MA. 2004

  19. Lin Y F, Liu X, Yao Y, Zhang X J, Liu X D, Lin F C. Key factors in the design of a LED volumetric 3D display system. Proceedings of SPIE, 2005, 5632: 147–154

    Article  Google Scholar 

  20. Xie X Y, Liu X, Lin Y F. The investigation of data voxelization for a three-dimensional volumetric display system. Journal of Optics A: Pure and Applied Optics, 2009, 11(4): 045707

    Article  Google Scholar 

  21. Lippmann M G. Epreuves reversibles donnant la sensation du relief. Journal de Physique, 1908, 7(4): 821–825

    Google Scholar 

  22. Lee B. Current status of integral imaging after 100 years of history. In: Proceedings of IMID/IDMC/ASIA DISPLAY’08, 2008, 1127–1130

  23. Min S W, Hahn M, Kim J, Lee B. Three-dimensional electrofloating display system using an integral imaging method. Optics Express, 2005, 13(12): 4358–4369

    Article  Google Scholar 

  24. Takeichi A, Yendo T, Fujii T, Tanimoto M. A novel 3D display using two lens arrays and shift of element images. Proceedings of SPIE, 2008, 6803: 68030A

    Article  Google Scholar 

  25. Okano F, Kawakita M, Arai J, Sasaki H, Yamashita T, Sato M, Suehiro K, Haino Y. Three-dimensional integral television using extremely high-resolution video system with 4,000 scanning lines. Proceedings of SPIE, 2007, 6778: 677805

    Article  Google Scholar 

  26. Liao H, Iwahara M, Hata N, Dohi T. High-quality integral videography using a multiprojector. Optics Express, 2004, 12(6): 1067–1076

    Article  Google Scholar 

  27. Cossairt O, Travis A R, Moller C, Benton S A. Novel view sequential display based on DMD technology. Proceedings of SPIE, 2004, 5291: 273–278

    Article  Google Scholar 

  28. Jones A, McDowall I, Yamada H, Bolas M, Debevec P. Rendering for an interactive 360° light field display. In: Proceedings of ACM SIGGRAPH’07. 2007, 5–9

  29. Yan C J, Liu X, Li H F, Xia X X, Lu H X, Zheng W T. Color three-dimensional display with omnidirection view based on a light-emitting diode projector. Applied Optics, 2009, 48(22): 4490–4495

    Article  Google Scholar 

  30. Hashimoto N, Morokawa S. Real-time electroholographic system using liquid crystal television spatial light modulators. Journal of Electronics Imaging, 1993, 2(2): 93–99

    Article  Google Scholar 

  31. St Hilarie P, Benton S A, Lucente M, Hubel P M. Color images with the MIT holographic video display. Proceedings of SPIE, 1992, 1667: 73–84

    Article  Google Scholar 

  32. Onural L, Bozdagi G, Atalar A. New high-resolution display device for holographic three-dimensional video: principles and simulations. Optical Engineering, 1994, 33(3): 835–844

    Article  Google Scholar 

  33. Maeno K, Fukaya N, Nishikawa O, Sato K, Honda T. Electroholographic display using 15 mega pixels LCD. Proceedings of SPIE, 1996, 2652: 15–23

    Article  Google Scholar 

  34. Yoshikawa H, Tamai J. Holographic image compression by motion picture coding. Proceedings of SPIE, 1996, 2652: 2–9

    Article  Google Scholar 

  35. Kreis T, Aswendt P, Höfling R. Hologram reconstruction using a digital micromirror device. Optical Engineering, 2001, 40(6): 926–933

    Article  Google Scholar 

  36. Ito T. Color electroholography by three colored reference lights simultaneously incident upon one hologram panel. Optics Express, 2004, 12(18): 4320–4325

    Article  Google Scholar 

  37. Poon T C, Akin T, Indebetouw G, Kim T. Horizontal-parallax-only electronic holography. Optics Express, 2005, 13(7): 2427–2432

    Article  Google Scholar 

  38. Ahrenberg L, Benzie P, Magnor M, Watson J. Computer generated holography using parallel commodity graphics hardware. Optics Express, 2006, 14(17): 7636–7641

    Article  Google Scholar 

  39. Huebschman M, Munjuluri B, Garner H. Digital micromirrors enable holographic video display. Laser Focus World, 2004, 40(5): 111–116

    Google Scholar 

  40. Kimura H, Uchiyama T, Yoshikawa H. Laser produced 3D display in the air. In: Proceedings of ACM SIGGRAPH’06. 2006, 20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Liu, X. Challenges of spatial 3D display techniques to optoelectronics. Front. Optoelectron. China 2, 355–361 (2009). https://doi.org/10.1007/s12200-009-0068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-009-0068-y

Keywords

Navigation