Advertisement

Frontiers of Optoelectronics in China

, Volume 2, Issue 1, pp 1–8 | Cite as

Homeostatic photobiomodulation

  • Timon Chengyi LiuEmail author
  • Ruochun Liu
  • Ling Zhu
  • Jianqin Yuan
  • Min Hu
  • Songhao Liu
Review Article

Abstract

Photobiomodulation (PBM) is a modulation of laser irradiation or monochromatic light (LI) on biosystems, which stimulates or inhibits biological functions but does not result in irreducible damage. LI might be of low intensity LI (LIL) (about 10 mW/cm2), or moderate intensity LI (MIL) (102-103 mW/cm2). PBM of LIL or MIL (LPBM or MPBM) is studied from the homeostatic viewpoint in this paper. Homeostasis is rede.ned as the function-specific homeostasis (FSH), a negative-feedback response of a biosystem which maintains the function-specific conditions inside it. PBM is classified into two kinds, the FSH-specific PBM (fPBM) and developmental PBM (dPBM). For fPBM, there is no PBM of LI on the function in FSH, but there is PBM of LI on the function far from FSH. dPBM can disrupt FSH. It can be found that LPBM is an fPBM, and whether MPBM is fPBM or dPBM depends on MIL dose and cell sensitivity. Low level LI therapy is just clinical applications of fPBM, so that it is a cellular rehabilitation.

Keywords

laser homeostasis rehabilitation photobiomodulation (PBM) phototherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell S S, Murphy P J. Extraocular circadian phototransduction in humans. Science, 1998, 279(5349): 396–399CrossRefGoogle Scholar
  2. 2.
    Wright K P, Czeisler C A. Absence of circadian phase resetting in response to bright light behind the knees. Science, 2002, 297(5581): 571–571CrossRefGoogle Scholar
  3. 3.
    Olshausen B A, Field D J. Sparse coding of sensory inputs. Current Opinion in Neurobiology, 2004, 14(4): 481–487CrossRefGoogle Scholar
  4. 4.
    Vinje W E, Gallant J L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science, 2000, 287(5456): 1273–1276CrossRefGoogle Scholar
  5. 5.
    Huber D, Petreanu L, Ghitani N, Ranade S, Hromádka T, Mainen Z, Svoboda K. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature, 2008, 451(7174): 61–64CrossRefGoogle Scholar
  6. 6.
    Houweling A R, Brecht M. Behavioural report of single neuron stimulation in somatosensory cortex. Nature, 2008, 451(7174): 65–68CrossRefGoogle Scholar
  7. 7.
    Feuillet L, Dufour H, Pelletier J. Brain of a white-collar worker. Lancet, 2007, 370(9583): 262–262CrossRefGoogle Scholar
  8. 8.
    Wang L, Zhou G B, Liu P, Song J H, Liang Y, Yan X J, Xu F, Wang B S, Mao J H, Shen Z X, Chen S J, Chen Z. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(12): 4826–4831CrossRefGoogle Scholar
  9. 9.
    Liu T C Y, Jiao J L, Duan R, Li Y, Yeung Y Y, Liu S H. Membrane mechanism of low intensity laser biostimulation on a cell. In: Simunovic Z, ed. Lasers in Medicine, Surgery and Dentistry. Croatia: European Medical Laser Association, 2003, 83–105Google Scholar
  10. 10.
    Liu T C Y, Jiao J L, Xu X Y, Liu X G, Deng S X, Liu S H. Photobiomodulation: phenomenology and its mechanism. Proceedings of SPIE, 2005, 5630: 185–191CrossRefGoogle Scholar
  11. 11.
    Karu T. The Science of Low-Power Laser Therapy. Amsterdam: Gordon and Breach Science Publishers, 1998, 95–226Google Scholar
  12. 12.
    Tunér J, Hode L. Low Level Laser Therapy. Graengesberg: Prima Books in Sweden AB, 1999, 90–92Google Scholar
  13. 13.
    Yang X H, Liu C Y, Liu S J, Li S M, Shen Y, Tan J R, Liang P H. Photobiomodulation on chondrocyte proliferation: in vitro evaluation. Chinese Journal of Lasers, 2006, 33(12): 1692–1698 (in Chinese)Google Scholar
  14. 14.
    Funakoshi Y, Shiono H, Inoue M, Kadota Y, Ohta M, Matsuda H, Okumura M, Eimoto T. Glucocorticoids induce G1 cell cycle arrest in human neoplastic thymic epithelial cells. Journal of Cancer Research and Clinical Oncology, 2005, 131(5): 314–322CrossRefGoogle Scholar
  15. 15.
    Chen X Y. Studies of the effect of glucocorticoid and statins on proliferation of C2C12 myoblast and its photobiomodulation. Dissertation for the Master’s Degree. Guangzhou: South China Normal University, 2008, 30–50Google Scholar
  16. 16.
    Bouma M G, Buurman W A, van den Wildenberg F A. Low energy laser irradiation fails to modulate the inflammatory function of human monocytes and endothelial cells. Lasers in Surgery and Medicine, 1996, 19(2): 207–215CrossRefGoogle Scholar
  17. 17.
    Lin Y S, Huang M H, Chai C Y, Yang R C. Effects of helium-neon laser on levels of stress protein and arthritic histopathology in experimental osteoarthritis. American Journal of Physical Medicine and Rehabilitation, 2004, 83(10): 758–765CrossRefGoogle Scholar
  18. 18.
    Iijima K, Shimoyama N, Shimoyama M, Mizuguchi T. Effect of low-power He-Ne laser on deformability of stored human erythrocytes. Journal of Clinical Laser Medicine and Surgery, 1993, 11(4):185–189Google Scholar
  19. 19.
    Duan R, Zhu L, Liu T C, Li Y, Liu J, Jiao J, Xu X, Yao L, Liu S. Light emitting diode irradiation protect against the amyloid beta 25-35 induced apoptosis of PC12 cell in vitro. Lasers in Surgery and Medicine, 2003, 33(3): 199–203CrossRefGoogle Scholar
  20. 20.
    Eells J T, Henry M M, Summerfelt P, Wong-Riley M T, Buchmann E V, Kane M, Whelan N T, Whelan H T. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(6): 3439–3444CrossRefGoogle Scholar
  21. 21.
    Aimbire F, Lopes-Martins R A, Castro-Faria-Neto H C, Albertini R, Chavantes M C, Pacheco M T, Leonardo P S, Iversen V V, Bjordal J M. Low-level laser therapy can reduce lipopolysaccharide-induced contractile force dysfunction and TNF-a levels in rat diaphragm muscle. Lasers in Medical Science, 2006, 21(4): 238–244CrossRefGoogle Scholar
  22. 22.
    Aimbire F, Ligeiro de Oliveira A P, Albertini R, Corrêa J C, Ladeira de Campos C B, Lyon J P, Silva J A Jr, Costa M S. Low level laser therapy (LLLT) decreases pulmonary microvascular leakage, neutrophil influx and IL-1β levels in airway and lung from rat subjected to LPS-induced inflammation. Inflammation, 2008, 31(3): 189–197CrossRefGoogle Scholar
  23. 23.
    Aimbire F, Santos F V, Albertini R, Castro-Faria-Neto H C, Mittmann J, Pacheco-Soares C. Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-κB dependent mechanism. International Immunopharmacology, 2008, 8(4): 603–605CrossRefGoogle Scholar
  24. 24.
    Karu T I, Ryabykh T P, Fedoseyeva G E, Puchkova N I. Heliumneon laser-induced respiratory burst of phagocytic cells. Lasers in Surgery and Medicine, 1989, 9(6): 585–588CrossRefGoogle Scholar
  25. 25.
    Aimbire F, Bjordal J M, Iversen V V, Albertini R, Frigo L, Pacheco M T, Castro-Faria-Neto H C, Chavantes M C, Labat R M, Lopes-Martins R A. Low level laser therapy partially restores trachea muscle relaxation response in rats with tumor necrosis factor α-mediated smooth airway muscle dysfunction. Lasers in Surgery and Medicine, 2006, 38(8): 773–778CrossRefGoogle Scholar
  26. 26.
    Karu T I, Pyatibrat L V, Kalendo G S. Donors of NO and pulsed radiation at λ = 820 nm exert effects on cell attachment to extracellular matrices. Toxicology Letters, 2001, 121(1): 57–61CrossRefGoogle Scholar
  27. 27.
    Wu M, Zhu L, Hu B, Liu T C Y, Rong D L, Chen T S. Effects of red light at 640 nm from light emitting diodes on the respiratory burst of human neutrophils. Journal of Innovative Optical Health Science, 2008, 1(2): 285–294CrossRefGoogle Scholar
  28. 28.
    Wu S, Xing D, Wang F, Chen T, Chen W R. Mechanistic study of apoptosis induced by high-fluence low-power laser irradiation using fluorescence imaging techniques. Journal of Biomedical Optics, 2007, 12(6): 064015CrossRefGoogle Scholar
  29. 29.
    Zhang J, Xing D, Gao X. Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. Journal of Cellular Physiology, 2008, 217(2): 518–528CrossRefGoogle Scholar
  30. 30.
    Fujimaki Y, Shimoyama T, Liu Q, Umeda T, Nakaji S, Sugawara K. Low-level laser irradiation attenuates production of reactive oxygen species by human neutrophils. Journal of Clinical Laser Medicine and Surgery, 2003, 21(3): 165–170CrossRefGoogle Scholar
  31. 31.
    Djavaheri-Mergny M, Dubertret L. UV-A-induced AP-1 activation requires the Raf/ERK pathway in human NCTC 2544 keratinocytes. Experimental Dermatology, 2001, 10(3): 204–210CrossRefGoogle Scholar
  32. 32.
    Fujihara N A, Hiraki K R, Marques M M. Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers in Surgery and Medicine, 2006, 38(4): 332–336CrossRefGoogle Scholar
  33. 33.
    Oliveira N M, Parizzotto N A, Salvini T F. GaAs (904-nm) laser radiation does not affect muscle regeneration in mouse skeletal muscle. Lasers in Surgery and Medicine, 1999, 25(1): 13–21CrossRefGoogle Scholar
  34. 34.
    Amaral A C, Parizotto N A, Salvini T F. Dose-dependency of lowenergy HeNe laser effect in regeneration of skeletal muscle in mice. Lasers in Medicine Science, 2001, 16(1): 44–51CrossRefGoogle Scholar
  35. 35.
    Morrone G, Guzzardella G A, Tigani D, Torricelli P, Fini M, Giardino R. Biostimulation of human chondrocytes with Ga-Al-As diode laser: ‘in vitro’ research. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 2000, 28(2): 193–201CrossRefGoogle Scholar
  36. 36.
    Shefer G, Partridge T A, Heslop L, Gross J G, Oron U, Halevy O. Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. Journal of Cell Science, 2002, 115(Pt 7): 1461–1469Google Scholar
  37. 37.
    Carnevalli C M, Soares C P, Zângaro R A, Pinheiro A L, Silva N S. Laser light prevents apoptosis in Cho K-1 cell line. Journal of Clinical Laser Medicine and Surgery, 2003, 21(4):193–196CrossRefGoogle Scholar
  38. 38.
    Mi X Q, Chen J Y, Cen Y, Liang Z J, Zhou L W. A comparative study of 632.8 and 532 nm laser irradiation on some rheological factors in human blood in vitro. Journal of Photochemistry and Photobiology B, 2004, 74(1): 7–12CrossRefGoogle Scholar
  39. 39.
    Wang T D, Dong W R, Xiao Y Q, Lin Y Q, Yi G H, Wei P, Wang D H. Effects of low-energy He-Ne laser irradiation of extracorporeally circulatory blood on ATPase activities of erythrocyte membrane in patients with IDDM. Laser Journal, 1992, 13(6): 324–327 (in Chinese)Google Scholar
  40. 40.
    Farkhutdinov U R. Intravascular laser irradiation of blood in the treatment of patients with bronchial asthma. Terapevticheskii Arkhiv, 2007, 79(3): 44–48Google Scholar
  41. 41.
    Cemek M, Caksen H, Bayiroǧlu F, Cemek F, Dede S. Oxidative stress and enzymic-non-enzymic antioxidant responses in children with acute pneumonia. Cell Biochemistry and Function, 2006, 24 (3): 269–273CrossRefGoogle Scholar
  42. 42.
    Mitsunobu F, Yamaoka K, Hanamoto K, Kojima S, Hosaki Y, Ashida K, Sugita K, Tanizaki Y. Elevation of antioxidant enzymes in the clinical effects of radon and thermal therapy for bronchial asthma. Journal of Radiation Research (Tokyo), 2003, 44(2): 95–99CrossRefGoogle Scholar
  43. 43.
    Xiao X C, Guo Y L, Chu X F, Jia S W, Zheng X Y, Zhou C X. Effects of low power laser irradiation in nasal cavity on cerebral blood flow perfusion of patients with brain infarction. Chinese Journal of Physical Medicine and Rehabilitation, 2005, 27(7): 418–420 (in Chinese)Google Scholar
  44. 44.
    Kipshidze N, Keelan M H Jr, Horn J B, Nikolaychik V. Photobiomodulation of vascular endothelial and smooth muscle cells in vitro with red laser light. Proceedings of SPIE, 1996, 2922: 422–430Google Scholar
  45. 45.
    Korogodin V I, Korogodina V L. Small doses and cell rehabilitation. Russian Journal of Ecology, 1997, 28(1): 20–24Google Scholar
  46. 46.
    Wang X L, Song M, Lou J N, Niu X Y. The study of cytotoxicity of different intracanal medications and cell rehabilitation on human periodontal ligament fibroblasts. Shanghai Journal of Stomatology, 2007, 16(5): 512–519 (in Chinese)Google Scholar
  47. 47.
    Day R N, Schaufele F. Fluorescent protein tools for studying protein dynamics in living cells: a review. Journal of Biomedical Optics, 2008, 13(3): 031202CrossRefGoogle Scholar
  48. 48.
    Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X. Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. Journal of Cellular Physiology, 2006, 206(2): 441–448CrossRefGoogle Scholar
  49. 49.
    Hübscher M, Vogt L, Banzer W. Laser needle acupuncture at Neiguan (PC6) does not mediate heart rate variability in young, healthy men. Photomedicine and Laser Surgery, 2007, 25(1): 21–25CrossRefGoogle Scholar
  50. 50.
    Wu J H, Chen H Y, Chang Y J, Wu H C, Chang W D, Chu Y J, Jiang J A. Study of autonomic nervous activity of night shift workers treated with laser acupuncture. Photomedicine and Laser Surgery, 2008, 26(6): 665–669Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Timon Chengyi Liu
    • 1
    • 2
    Email author
  • Ruochun Liu
    • 2
  • Ling Zhu
    • 1
  • Jianqin Yuan
    • 1
  • Min Hu
    • 3
  • Songhao Liu
    • 4
  1. 1.Laboratory of Laser Sports MedicineCollege of Sports Science, South China Normal UniversityGuangzhouChina
  2. 2.College of LifeSouth China Normal UniversityGuangzhouChina
  3. 3.Laboratory Center for Sport Science and MedicineGuangzhou Institute of Physical EducationGuangzhouChina
  4. 4.School for Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangzhouChina

Personalised recommendations