Skip to main content
Log in

Growth of phosphorus-doped p-type ZnO thin films by MOCVD

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Phosphorus-doped p-type ZnO thin films are prepared on glass substrates by metalorganic chemical vapor deposition (MOCVD). DEZn, O2, and P2O5 powders are used as reactant and dopant sources. The p-type ZnO films are grown at a temperature between 673 K and 723 K. The best p-type sample has a low resistivity of 4.64 Ω·cm, a hole concentration of 1.61 × 1018 cm−3, and a Hall mobility of 0.838 cm2·(V·s)−1 at room temperature. A strong emission peak at 3.354 eV corresponding to neutral acceptor bound excitons is observed at 77 K in the photoluminescence spectra, which further verifies the p-type characteristics of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye Z Z, Ma D W, He J H, et al. Structural and photoluminescent properties of ternary Zn1−x CdxO crystal films grown on Si(111) substrates. Journal of Crystal Growth, 2003, 256(1): 78–82

    Article  Google Scholar 

  2. Wong E C, Searon P C. ZnO quantum particle thin films fabricated by electrophoretic deposition. Applied Physics Letters, 1999, 74(20): 2939–2941

    Article  Google Scholar 

  3. Kohan A F, Ceder G, Morgan D, et al. First-principles study of native point defects in ZnO. Physical Review B, 2000, 61(22): 15019–15027

    Article  Google Scholar 

  4. Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO. Physical Review Letters, 1999, 82(12): 2552–2555

    Article  Google Scholar 

  5. Minegishi K, Koiwai Y, Kikuchi Y, et al. Growth of p-type zinc oxide films by chemical vapor deposition. Japanese Journal of Applied Physics, 1997, 36(11): L1453–L1455

    Article  Google Scholar 

  6. Lu J G, Ye Z Z, Zhuge F, et al. P-type conduction in N-Al codoped ZnO thin films. Applied Physics Letters, 2004, 85(15): 3134–3135

    Article  Google Scholar 

  7. Xu W Z, Ye Z Z, Zhou T, et al. MOCVD growth of p-type ZnO thin films by using NO as the dopant source. Chinese Journal of Semiconductors, 2005, 26(1): 38–41 (in chinense)

    Google Scholar 

  8. Joseph M, Tabata H, Kawai T. P-type electrical conduction in ZnO thin films by Ga and N codoping. Japanese Journal of Applied Physics, 1999, 38(11): L1205–L1207

    Article  Google Scholar 

  9. Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Applied Physics Letters, 2002, 81(10): 1830–1832

    Article  Google Scholar 

  10. Singh A V, Mehra R M, Wakahara A, et al. p-type conduction in codoped ZnO thin films. Journal of Applied Physics, 2003, 93(1): 396–399

    Article  Google Scholar 

  11. Barnes T M, Olson K, Wolden C A. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide. Applied Physics Letters, 2005, 86(11): 112112

    Google Scholar 

  12. Aoki T, Hatanaka Y, Look D C. ZnO diode fabricated by excimer-laser doping. Applied Physics Letters, 2000, 76(22): 3257–3258

    Article  Google Scholar 

  13. Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant. Applied Physics Letters, 2003, 83(1): 63–65

    Article  Google Scholar 

  14. Bang K H, Hwang D K, Park M C, et al. Formation of p-type ZnO film on InP substrate by phosphor doping. Applied Surface Science, 2003, 210(3): 177–182

    Article  Google Scholar 

  15. Ryu Y R, Lee T S, White H W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Applied Physics Letters, 2003, 83(1): 87–89

    Article  Google Scholar 

  16. Aoki T, Shimizu Y, Miyake A, et al. P-type ZnO layer formation by excimer laser doping. Physica Status Solidi B, 2002, 229(2): 911–914

    Article  Google Scholar 

  17. Lim W T, Lee C H. Highly oriented ZnO thin films deposited on Ru/Si substrates. Thin Solid Films, 1999, 353(1–2): 12–15

    Google Scholar 

  18. Lu J G, Ye Z Z, Huang J Y, et al. Influence of postdeposition annealing on crystallinity of zinc oxide films. Chinese Journal of Semiconductors, 2003, 24(7): 729–736 (in Chinese)

    Google Scholar 

  19. Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: the impurity perspective. Physical Review B, 2002, 66(7): 073202

    Google Scholar 

  20. Limpijumnong S, Zhang S B, Wei S H, et al. Doping by largesize-mismatched impurities: the microscopic origin of arsenic-or antimony doped p-type zinc oxide. Physical Review Letters, 2004, 92(15): 155504

    Google Scholar 

  21. Carballeda-Galicia D M, Castanedo-Perez R, Jimenez-Sandoval O, et al. High transmittance CdO thin films obtained by the sol-gel method. Thin Solid Films, 2000, 371(1): 105–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhizhen Ye.

Additional information

__________

Translated from Chinese Journal of Semiconductors, 2006, 27(1): 91–95 [译自: 半导体学报]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Z., Wang, J., Wu, Y. et al. Growth of phosphorus-doped p-type ZnO thin films by MOCVD. Front. Optoelectron. China 1, 147–150 (2008). https://doi.org/10.1007/s12200-008-0024-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-008-0024-2

Keywords

Navigation