Skip to main content
Log in

High nonlinear photonic crystal fiber and its supercontinuum spectrum

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

The high nonlinear photonic crystal fiber with pure silica core has been designed and fabricated, and the practical structure parameters of the fabricated fiber sample coincided precisely with the parameters we designed. The core diameter is 1.65 μm; the air hole diameter is 4.75 μm; the distance between the center of two holes is 5.35 μm; the zero dispersion wavelength of the fiber is 1120 nm; the dispersion at 800 nm is −88 ps·(nm·km)−1; and the nonlinear coefficient of this photonic crystal fiber is 112 (W·km)−1. The broadly spanning supercontinuum emission with a smooth spectrum stretching from 450 to 1400 nm was attained by the injection of 30 fs Ti:sapphire laser pulses into 2 m-long high linear photonic crystal fibers, with an energy up to 5 nJ at a pulse repetition rate of 100 MHz and a central wavelength of 800 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuhlmey B T, McPhedran R C, de Sterke C M, et al. Microstructured optical fibers: where’s the edge? Optics Express, 2002, 10(22): 1285–1290

    Google Scholar 

  2. Foster M, Gaeta A. Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137–3143

    Article  Google Scholar 

  3. Podlipensky A, Szarniak P, Joly N Y, et al. Bound soliton pairs in photonic crystal fiber. Optics Express, 2007, 15(4): 1653–1662

    Article  Google Scholar 

  4. Luan F, Skryabin D V, Yulin A V, et al. Energy exchange between colliding solitons in photonic crystal fibers. Optics Express, 2006, 14(21): 9844–9853

    Article  Google Scholar 

  5. Zhang R, Teipel J, Giessen H. Theoretical design of a liquidcore photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800–6812

    Article  Google Scholar 

  6. Saitoh K, Fujisawa T, Kirihara T, et al. Approximate empirical relations for nonlinear photonic crystal fibers. Optics Express, 2006, 14(14): 6572–6582

    Article  Google Scholar 

  7. Takara H, Ohara T, Mori K, et al. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. Electronics Letters, 2000, 36(25): 2089–2090

    Article  Google Scholar 

  8. Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12(10): 2027–2032

    Article  Google Scholar 

  9. Yamamoto T, Kubota H, Kawanishi S, et al. Supercontinuum generation at 1.55 um in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537–1540

    Article  Google Scholar 

  10. Varshney S, Fujisawa T, Saitoh K, et al. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Optics Express, 13(23): 9516–9526

  11. Kudlinski A, George A K, Knight J C, et al. Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extend supercontinuum generation. Optics Express, 2006, 14(12): 5715–5722

    Article  Google Scholar 

  12. Omenetto F G, Wolchover N A, Wehner M R, et al. Spectrally smooth supercontinuum for 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers. Optics Express, 2006, 14(11): 4928–4934

    Article  Google Scholar 

  13. Kano H, Hamaguchi H. In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber. Optics Express, 2006, 14(7): 2798–2804

    Article  Google Scholar 

  14. Fu L, Jain A, Xie H, et al. Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror. Optics Express, 2006, 14(3): 1027–1032

    Article  Google Scholar 

  15. Hilligsøe K M, Andersen T V, Paulsen H N, et al. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Optics Express, 2004, 12(6): 1045–1054

    Article  Google Scholar 

  16. Huttunen A, Törmä P. Effect of wavelength dependence of non-linearity, gain, and dispersion in photonic crystal fiber amplifiers. Optics Express, 2005, 13(11): 4286–4295

    Article  Google Scholar 

  17. Efimov A, Taylor A, Omenetto F G, et al. Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling. Optics Express, 2004, 12(26): 6498–6507

    Article  Google Scholar 

  18. Zhang R, Teipel J, Giessen H. Theoretical design of a liquidcore photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800–6812

    Article  Google Scholar 

  19. Genty G, Lehtonen M, Ludvigsen H, et al. Enhanced bandwidth of supercontinuum generated in micro-structured fibers. Optics Express, 2004, 12(15): 3471–3480

    Article  Google Scholar 

  20. Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25–27

    Article  Google Scholar 

  21. Hu M L, Wang C Y, Song Y J, et al. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic crystal fibers. Optics Express, 2006, 14(3): 1189–1198

    Article  Google Scholar 

  22. Chow K K, Shu C, Lin C, et al. Extinction ratio improvement by pump-modulated four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber. Optics Express, 2005, 13(22): 8900–8905

    Article  Google Scholar 

  23. Saitoh K, Florous N, Koshiba M. Ultra flattened chromatic dispersion controllability using a defected core photonic crystal fiber with low confinement losses. Optics Express, 2005, 13(21): 8365–8371

    Article  Google Scholar 

  24. Fuerbach A, Steinvurzel P, Bolger J, et al. Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers. Optics Express, 2005, 13(8): 2977–2987

    Article  Google Scholar 

  25. Dudley J, Coen S. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. Optics Express, 2004, 12(11): 2423–2428

    Article  Google Scholar 

  26. Zhang H, Yu S, Zhang J, et al. Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths. Optics Express, 2007, 15(3): 1147–1154

    Article  Google Scholar 

  27. Gorbach A V, Skryabin D V, Stone J M, et al. Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short wavelength edge of a supercontinuum. Optics Express, 2006, 14(21): 9854–9863

    Article  Google Scholar 

  28. Räikkönen E, Genty G, Kimmelma O, et al. Supercontinuum generation by nanosecond dual-wavelength pumping in micro-structured optical fibers. Optics Express, 2006, 14(17): 7914–7923

    Article  Google Scholar 

  29. Genty G, Ritari T, Ludvigsen H. Supercontinuum generation in large mode area micro-structured fibers. Optics Express, 2005, 13(21): 8625–8633

    Article  Google Scholar 

  30. Hu M L, Wang C Y, Li Y F, et al. Tunable supercontinuum generation in a high index-step photonic-crystal fiber with a comma-shaped core. Optics Express, 2006, 14(5): 1942–1950

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Additional information

__________

Translated from Study on Optical Communications, 2007, (2): 49–50, 66 [译自: 光通信研究]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Li, J., Li, S. et al. High nonlinear photonic crystal fiber and its supercontinuum spectrum. Front. Optoelectron. China 1, 75–78 (2008). https://doi.org/10.1007/s12200-008-0004-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-008-0004-6

Keywords

Navigation