Skip to main content
Log in

Importance of detoxifying enzymes in differentiating fibrotic development between SHRSP5/Dmcr and SHRSP rats

  • Regular Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Objectives

High-fat and -cholesterol diet (HFC) induced fibrotic steatohepatitis in stroke-prone spontaneously hypertensive rat (SHRSP) 5/Dmcr, the fifth substrain from SHRSP, by dysregulating bile acid (BA) kinetics. This study aimed to clarify the histopathological and BA kinetic differences in HFC-induced fibrosis between SHRSP5/Dmcr and SHRSP.

Methods

Ten-week-old male SHRSP5/Dmcr and SHRSP were randomly allocated to groups and fed with either control diet or HFC for 2 and 8 weeks. The liver histopathology, biochemical features, and molecular signaling involved in BA kinetics were measured.

Results

HFC caused more severe hepatocyte ballooning, macrovesicular steatosis and fibrosis in SHRSP5/Dmcr than in SHRSP. It was noted that fibrosis was disproportionately formed in retroperitoneal side of both strains. As for BA kinetics, HFC greatly increased the level of Cyp7a1 and Cyp7b1 to the same degree in both strains at 8 weeks, while multidrug resistance-associated protein 3 was greater in SHRSP5/Dmcr than SHRSP. The diet decreased the level of bile salt export pump by the same degree in both strains, while constitutive androstane receptor, pregnane X receptor, and UDP-glucuronosyltransferase activity more prominent in SHRSP5/Dmcr than SHRSP at 8 weeks. In the fibrosis-related genes, only expression of collagen, type I, alpha 1 mRNA was greater in SHRSP5/Dmcr than SHRSP.

Conclusions

The greater progression of fibrosis in SHRSP5/Dmcr induced by HFC may be due to greater suppression of UDP-glucuronosyltransferase activity detoxifying toxicants, such as hydrophobic BAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

αSMA:

Alpha smooth muscle actin

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BA:

Bile acid

BSEP:

Bile salt export pump

CA:

Cholic acid

CAR:

Constitutive androstane receptor

CDCA:

Chenodeoxycholic acid

COL1a1:

Collagen, type I, alpha 1

CV:

Central vein

CYP27A1:

Cholesterol 27-hydroxylase

CYP7A1:

Cholesterol 7α-hydroxylase

CYP7B1:

Oxysterol 7α-hydroxylase

CYP8B1:

Sterol 12α-hydroxylase

EVG:

Elastic Van Gieson

FXR:

Farnesoid X receptor

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GGT:

Γ-Glutamyl transpeptidase

H&E:

Hematoxylin and eosin

HFC:

High-fat and -cholesterol diet

MRP:

Resistance-associated protein

MMP-2:

Matrix metalloproteinase-2

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

PDGFβR:

Platelet-derived growth factor receptor, β polypeptide

PXR:

Pregnane X receptor

SHRSP:

Stroke-prone spontaneously hypertensive rat

SULT:

Sulfotransferase

TC:

Total cholesterol

UGT:

UDP-glucuronosyltransferase

References

  1. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43:S99–112.

    Article  CAS  PubMed  Google Scholar 

  2. Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, et al. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology. 2003;37:909–16.

    Article  CAS  PubMed  Google Scholar 

  3. Yasutake K, Nakamuta M, Shima Y, Ohyama A, Masuda K, Haruta N, et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol. 2009;44:471–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology. 2004;126:322–42.

    Article  CAS  PubMed  Google Scholar 

  5. Haslewood GA. The biological significance of chemical differences in bile salts. Biol Rev Camb Philos Soc. 1964;39:537–74.

    Article  CAS  PubMed  Google Scholar 

  6. Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 2003;83:633–71.

    Article  CAS  PubMed  Google Scholar 

  7. Jia X, Naito H, Yetti H, Tamada H, Kitamori K, Hayashi Y, et al. Dysregulated bile acid synthesis, metabolism and excretion in a high fat-cholesterol diet-induced fibrotic steatohepatitis in rats. Dig Dis Sci. 2013;58:2212–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia X, Suzuki Y, Naito H, Yetti H, Kitamori K, Hayashi Y, et al. A possible role of chenodeoxycholic acid and glycine-conjugated bile acids in fibrotic steatohepatitis in a dietary rat model. Dig Dis Sci. 2014;59:1490–501.

    Article  CAS  PubMed  Google Scholar 

  9. Zollner G, Trauner M. Nuclear receptors as therapeutic targets in cholestatic liver diseases. Br J Pharmacol. 2009;156:7–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kitamori K, Naito H, Tamada H, Kobayashi M, Miyazawa D, Yasui Y, et al. Development of novel rat model for high-fat and high-cholesterol diet-induced steatohepatitis and severe fibrosis progression in SHRSP5/Dmcr. Environ Health Prev Med. 2012;17:173–82.

    Article  CAS  PubMed  Google Scholar 

  11. Jia X, Naito H, Yetti H, Tamada H, Kitamori K, Hayashi Y, et al. The modulation of hepatic adenosine triphosphate and inflammation by eicosapentaenoic acid during severe fibrotic progression in the SHRSP5/Dmcr rat model. Life Sci. 2012;90:934–43.

    Article  CAS  PubMed  Google Scholar 

  12. Nakajima T, Naito H. Mechanism analysis and prevention of pathogenesis of nonalcoholic steatohepatitis. Nihon Eiseigaku Zasshi. 2015;70:197–204 (in Japanese).

    Article  CAS  PubMed  Google Scholar 

  13. Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, et al. Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos. 2004;32:413–23.

    Article  CAS  PubMed  Google Scholar 

  14. Lee CH, Ito Y, Yanagiba Y, Yamanoshita O, Kim H, Zhang SY, et al. Pyrene-induced CYP1A2 and SULT1A1 may be regulated by CAR and not by AhR. Toxicology. 2007;238:147–56.

    Article  CAS  PubMed  Google Scholar 

  15. Suzuki Y, Kaneko R, Nomura M, Naito H, Kitamori K, Nakajima T, et al. Simple and rapid quantitation of 21 bile acids in rat serum and liver by UPLC-MS-MS: effect of high fat diet on glycine conjugates of rat bile acids. Nagoya J Med Sci. 2013;75:57–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Prosser CC, Yen RD, Wu J. Molecular therapy for hepatic injury and fibrosis: where are we? World J Gastroenterol. 2006;12:509–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2000;279:G245–9.

    CAS  PubMed  Google Scholar 

  18. Trottier J, Milkiewicz P, Kaeding J, Verreault M, Barbier O. Coordinate regulation of hepatic bile acid oxidation and conjugation by nuclear receptors. Mol Pharm. 2006;3:212–22.

    Article  CAS  PubMed  Google Scholar 

  19. Wagner M, Halilbasic E, Marschall HU, Zollner G, Fickert P, Langner C, et al. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology. 2005;42:420–30.

    Article  CAS  PubMed  Google Scholar 

  20. Greco AV, Mingrone G. Serum bile acid concentrations in mild liver cirrhosis. Clin Chim Acta. 1993;221:183–9.

    Article  CAS  PubMed  Google Scholar 

  21. Vlahcevic ZR, Goldman M, Schwartz CC, Gustafsson J, Swell L. Bile acid metabolism in cirrhosis. VII. Evidence for defective feedback control of bile acid synthesis. Hepatology. 1981;1:146–50.

    Article  CAS  PubMed  Google Scholar 

  22. Trottier J, Verreault M, Grepper S, Monte D, Belanger J, Kaeding J, et al. Human UDP-glucuronosyltransferase (UGT)1A3 enzyme conjugates chenodeoxycholic acid in the liver. Hepatology. 2006;44:1158–70.

    Article  CAS  PubMed  Google Scholar 

  23. Trottier J, Perreault M, Rudkowska I, Levy C, Dallaire-Theroux A, Verreault M, et al. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants, and response to fenofibrate. Clin Pharmacol Ther. 2013;94:533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys. 2005;433:397–412.

    Article  CAS  PubMed  Google Scholar 

  25. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, et al. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362–5.

    Article  CAS  PubMed  Google Scholar 

  26. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365–8.

    Article  CAS  PubMed  Google Scholar 

  27. Bock KW. Functions and transcriptional regulation of adult human hepatic UDP-glucuronosyl-transferases (UGTs): mechanisms responsible for interindividual variation of UGT levels. Biochem Pharmacol. 2010;80:771–7.

    Article  CAS  PubMed  Google Scholar 

  28. Stedman CA, Liddle C, Coulter SA, Sonoda J, Alvarez JG, Moore DD, et al. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proc Natl Acad Sci USA. 2005;102:2063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanada K, Nakai K, Tanaka H, Suzuki F, Kumada H, Ohno Y, et al. Effect of nuclear receptor downregulation on hepatic expression of cytochrome P450 and transporters in chronic hepatitis C in association with fibrosis development. Drug Metab Pharmacokinet. 2012;27:301–6.

    Article  CAS  PubMed  Google Scholar 

  30. Akita H, Suzuki H, Sugiyama Y. Sinusoidal efflux of taurocholate is enhanced in Mrp2-deficient rat liver. Pharm Res. 2001;18:1119–25.

    Article  CAS  PubMed  Google Scholar 

  31. Hirohashi T, Suzuki H, Ito K, Ogawa K, Kume K, Shimizu T, et al. Hepatic expression of multidrug resistance-associated protein-like proteins maintained in eisai hyperbilirubinemic rats. Mol Pharmacol. 1998;53:1068–75.

    CAS  PubMed  Google Scholar 

  32. Hirohashi T, Suzuki H, Sugiyama Y. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J Biol Chem. 1999;274:15181–5.

    Article  CAS  PubMed  Google Scholar 

  33. Brunt EM. Nonalcoholic steatohepatitis. Semin Liver Dis. 2004;24:3–20.

    PubMed  Google Scholar 

  34. Yetti H, Naito H, Jia X, Shindo M, Taki H, Tamada H, et al. High-fat-cholesterol diet-induced mainly necrosis in fibrotic steatohepatitis rats by suppressing caspase activity. Life Sci. 2013;93:673–80.

    Article  CAS  PubMed  Google Scholar 

  35. Paulusma CC, de Waart DR, Kunne C, Mok KS, Elferink RP. Activity of the bile salt export pump (ABCB11) is critically dependent on canalicular membrane cholesterol content. J Biol Chem. 2009;284:9947–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hui AY, Chan HL, Wong VW, Liew CT, Chim AM, Chan FK, et al. Identification of chronic hepatitis B patients without significant liver fibrosis by a simple noninvasive predictive model. Am J Gastroenterol. 2005;100:616–23.

    Article  PubMed  Google Scholar 

  37. Shi Y, Guo Q, Xia F, Dzyubak B, Glaser KJ, Li Q, et al. MR elastography for the assessment of hepatic fibrosis in patients with chronic hepatitis B infection: does histologic necroinflammation influence the measurement of hepatic stiffness? Radiology. 2014;273:88–98.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Angulo P, Keach JC, Batts KP, Lindor KD. Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology. 1999;30:1356–62.

    Article  CAS  PubMed  Google Scholar 

  39. Fu ZD, Csanaky IL, Klaassen CD. Gender-divergent profile of bile acid homeostasis during aging of mice. PLoS One. 2012;7:e32551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wieckowska A, Feldstein AE. Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. Semin Liver Dis. 2008;28:386–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work has been supported by Grants-in-Aid for Scientific Research (B. 23390161, C. 25460797), Grants-in-Aid for Young Scientists (B. 22790543, Start-up. 21890098) and Uehara Memorial Foundation in 2009 (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Naito.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naito, H., Jia, X., Yetti, H. et al. Importance of detoxifying enzymes in differentiating fibrotic development between SHRSP5/Dmcr and SHRSP rats. Environ Health Prev Med 21, 368–381 (2016). https://doi.org/10.1007/s12199-016-0539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12199-016-0539-x

Keywords

Navigation