Medical effects of internal contamination with actinides: further controversy on depleted uranium and radioactive warfare

  • Asaf DurakovicEmail author


The Nuclear Age began in 1945 with testing in New Mexico, USA, and the subsequent bombings of Hiroshima and Nagasaki. Regardless of attempts to limit the development of nuclear weapons, the current world arsenal has reached the staggering dimensions and presents a significant concern for the biosphere and mankind. In an explosion of a nuclear weapon, over 400 radioactive isotopes are released into the biosphere, 40 of which pose potential dangers including iodine, cesium, alkaline earths, and actinides. The immediate health effects of nuclear explosions include thermal, mechanical, and acute radiation syndrome. Long-term effects include radioactive fallout, internal contamination, and long-term genotoxicity. The current controversial concern over depleted uranium’s somatic and genetic toxicity is still a subject of worldwide sustained research. The host of data generated in the past decades has demonstrated conflicting findings, with the most recent evidence showing that its genotoxicity is greater than previously considered. Of particular concern are the osteotropic properties of uranium isotopes due to their final retention in the crystals of exchangeable and nonexchangeable bone as well as their proximity to pluripotent stem cells. Depleted uranium remains an unresolved issue in both warfare and the search for alternative energy sources.


Radioactive warfare Depleted uranium Organotropic radioisotopes Nuclear proliferation Internal contamination with radionuclides 



The author declares that there are no financial or any other conflicts of interest.


  1. 1.
    Walker G. The first atomic test. Trinity Atomic Web Site. 2005. Accessed 21 Mar 2015.
  2. 2.
    Malam J. The bombing of Hiroshima: August 6, 1945. Minnesota: Smart Apple Media; 2003.Google Scholar
  3. 3.
    McNamara R, Blight J. Wilson’s ghost: reducing the risk of conflict, killing and catastrophe in the 21st century. NY: PublicAffairs; 2003.Google Scholar
  4. 4.
    Kimball D, Davenport K. Nuclear weapons: who has what at a glance: Arms Control Association, Federation of American Scientists, International Panel on Fissile Materials, U.S. Department of Defense, and U.S. Department of State. Updated 2015. Accessed 15 Mar 2015.
  5. 5.
    Durakovic A. Internal contamination with medically significant radionuclides. In: Conklin J, Walker R, editors. Military radiobiology. Orlando: Academic Press, Inc; 1987.Google Scholar
  6. 6.
    Vaughan J, Bleaney B, Taylor DM. Distribution, excretion, and effects of plutonium as a bone seeker. In: Hodge HC, Stannard JN, Hursh JB, editors. Handbook of experimental pharmacology—uranium, plutonium, transplutonic elements. Berlin and NY: Springer-Verlag; 1973.Google Scholar
  7. 7.
    EPA. Radiation protection. Plutonium. Updated 14 Dec 2014. Accessed 13 Mar 2015.
  8. 8.
    Lloyd RD. Cesium-137 half-times in humans. Health Phys. 1973;25(6):605–12.PubMedGoogle Scholar
  9. 9.
    Holland JZ. Physical origin and dispersion of radioiodine. Health Phys. 1963;9:1095.CrossRefPubMedGoogle Scholar
  10. 10.
    Centers for Disease Control and Prevention. Emergency preparedness and response: acute radiation syndrome. Accessed 23 Mar 2015.
  11. 11.
    Landauer MR. Radiation-induced performance decrement. Mil Med. 2002;167(2 Suppl):128–30.PubMedGoogle Scholar
  12. 12.
    Bowers G. The combined injury syndrome. In: Conklin, J, Walker R, editors. Military radiobiology. Orlando: Academic Press, Inc; 1987.Google Scholar
  13. 13.
    Franic Z. Estimation of the Adriatic Sea water turnover time using fallout 90Sr as a radioactive tracer. J Mar Syst. 2005;57(1–2):1–12.CrossRefGoogle Scholar
  14. 14.
    Ramzaev V, et al. Radiocesium fallout in the grasslands on Sakhalin, Kunashir and Shikotan Islands due to Fukushima accident. J Environ Radioact. 2013;118:128–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Kozai N, Suzuki S, Aoyagi N, Sakamoto F, Ohnuki T. Radioactive fallout cesium in sewage sludge ash produced after the Fukushima Daiichi nuclear accident. Water Res. 2015;68:616–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Bolsunovsky A, Dementyev D. Radioactive contamination of pine (Pinus sylvestris) in Krasnoyarsk (Russia) following fallout from the Fukushima accident. J Environ Radioact. 2014;138:87–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Radiation Emergency Medical management. U.S. Department of Health and Human Services. Updated 21 Nov 2014. Accessed 2 Mar 2015.
  18. 18.
    Cohen, B. The nuclear energy option: an alternative for the 90s. New York: Plenum Press; 1990.CrossRefGoogle Scholar
  19. 19.
    Winter M. Uranium: isotope data. WebElements Ltd, UK. Published 1993. Updated 2015. Accessed 13 Mar 2015.
  20. 20.
    Morgan Minutes. Published by Busby C on Nov 2014. Accessed 20 Mar 2015.
  21. 21.
    Guirguis L, Faraq N, Salim A. Accurate fast method with high chemical yield for determination of uranium isotopes (234U, 235U, 238U) in granitic samples using alpha spectroscopy. Nucl Instrum Methods Phys Res Sect A. 2014;777(21):211–7.Google Scholar
  22. 22.
    Durakovic A. Medical effects of internal contamination with uranium. Croat Med J. 1999;40:49–66.PubMedGoogle Scholar
  23. 23.
    Zimmerman P. A primer in the art of deception. The cult of the nuclearists, uranium weapons and fraudulent science. New York: Zimmerman; 2009.Google Scholar
  24. 24.
    Bliese A, Danesi PR, Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview. J Environ Radioact. 2001;64:93–112.CrossRefGoogle Scholar
  25. 25.
    Sarap NB, Jankovic MM, Todorovic DJ, Nikolic JD, Kovacevic MS. Environmental radioactivity in southern Serbia at locations where depleted uranium was used. Arch Ind Hyg Toxicol. 2014;65(2):189.Google Scholar
  26. 26.
    Busby C. The health effects of exposure to uranium and uranium weapons fallout. Documents of the ECRR 2010, No 2. Accessed 18 Mar 2016.
  27. 27.
    Rakovan J, Reeder RJ, Elzinga EJ, Cherniak DJ, Tait DC, Morriss DE. Structural characterization of U(VI) in apatite by X-ray absorption spectroscopy. Environ Sci Technol. 2002;36(14):3114–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Peragallo MS, Urbano F, Sarnicola G, Lista F, Veccione A. Cancer incidence in the military: an update. Epidemiol Prev. 2011;35(5–6):339–45.PubMedGoogle Scholar
  29. 29.
    Sudarevic B, Radoja I, Simunovic D, Kuvezdic H. Trends in testicular germ cell cancer incidence in eastern Croatia. Med Glas (Zenica). 2014;11(1):152–8.PubMedGoogle Scholar
  30. 30.
    Bogers RP, van Leeuwen FE, Grievnik L, Schouten LJ, Kiemeney LA, Schram-Bijkerk D. Cancer incidence in Dutch Balkan veterans. Cancer Epidemiol. 2013;37(5):550–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Strand LA, Martinsen JI, Borud EK. Cancer risk and all-cause mortality among Norwegian military United Nations peacekeepers deployed to Kosovo between 1999 and 2011. Cancer Epidemiol. 2014;38(4):364–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Pattison JE. The interaction of natural background gamma radiation with depleted uranium micro-particles in the human body. J Radiol Protoc. 2013;33(1):187–98.CrossRefGoogle Scholar
  33. 33.
    Fathi RA, Matti LY, Al-Salih HS, Godbold D. Environmental pollution by depleted uranium in Iraq with special reference to Mosul and possible effects on cancer and birth defect rates. Med Confl Surviv. 2013;29(1):7–25.CrossRefPubMedGoogle Scholar
  34. 34.
    Busby C, Hamdan M, Ariabi E. Cancer, infant mortality and birth sex-ratio in Fallujah, Iraq 2005–2009. Int J Environ Res Public Health. 2010;7(7):2828–37.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Miller AC, Stewart M, Rivas R. Preconceptional paternal exposure to depleted uranium transmission of genetic damage to offspring. Heath Phys. 2010;99(3):371–9.CrossRefGoogle Scholar
  36. 36.
    Xie H, LaCerte C, Thompson WD, Wise JP Sr. Depleted uranium induces neoplastic transformation in human lung epithelial cells. Chem Res Toxicol. 2010;23(2):373–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Miller AC, Stewart M, Rivas R. DNA methylation during depleted uranium-induced leukemia. Biochimie. 2009;91(10):1328–30.CrossRefPubMedGoogle Scholar
  38. 38.
    Orona NS, Tasat DR. Uranyl nitrate-exposed rat alveolar macrophages cell death: influence of superoxide anion and TNF a mediators. Toxicol Appl Pharmacol. 2012;261(3):309–16.CrossRefPubMedGoogle Scholar
  39. 39.
    Al-Hashimi MM, Wang X. Comparing the cancer in Ninawa during three periods (1980–1990, 1991–2000. 2001–2010) using Poisson regression. J Res Med Sci. 2013;18(12):1026–39.Google Scholar
  40. 40.
    Bakhmutsky M, Squibb K, McDiarmid M, Oliver M, Tucker JD. Long-term exposure to depleted uranium in Gulf War veterans does not induce chromosome aberrations in peripheral blood lymphocytes. Mutat Res Genet Toxicol Environ Mutagen. 2013;737(2):132–9.CrossRefGoogle Scholar
  41. 41.
    Shelleh HH. Depleted uranium. Is it potentially involved in the recent upsurge of malignancies in populations exposed to war dust? Saudi Med. 2012;33(5):483–8.Google Scholar
  42. 42.
    Briner W, Murray J. Effects of short term and long term depleted uranium exposure in open field behavior and brain lipid oxidation in rats. Neurotoxicol Teratol. 2005;27(1):135–44.CrossRefPubMedGoogle Scholar
  43. 43.
    Hao Y, Ren J, Liu J, et al. Immunological changes of chronic oral exposure to depleted uranium in mice. Toxicology. 2013;309:81–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Wilson J, Zuniga MC, Yazzie F, Stearns DM. Synergistic cytotoxicity and DNA strand breaks in cells and plasmid DNA exposed to uranyl acetate and ultraviolet radiation. J Appl Toxicol. 2015;35(4):338–49.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J. Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta (BBA). 2012;1820(12):1940–50.CrossRefPubMedGoogle Scholar
  46. 46.
    Mirderikvand N, et al. Embryo toxic effects of depleted uranium on the morphology of the mouse fetus. Iran J Pharm Res. 2014;13(1):199–206. doi: 10.1002/jat.3015.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Canepa C. A model study of the absorbed dose of radiation following respiratory intake of 238U3O8 aerosols. Radiat Prot Dosim. 2014;162(4):515–22.CrossRefGoogle Scholar
  48. 48.
    Valdes M. Estimation of the respiratory tract burden resulting from a prolonged inhalation exposure to aerosols of DU, based on the U in a 24-h urine sample taken years after exposure. Radiat Prot Dosim. 2014;162(4):544–62.CrossRefGoogle Scholar
  49. 49.
    Crean DE, Livens FR, Stennett MC, Grolimund D, Borca CN, Hyatt NC. Microanalytical X-ray imaging of depleted uranium speciation in environmentally aged munitions residues. Environ Sci Technol. 2014;48(3):1467–74. doi: 10.1021/es403938d.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhu G, Tan M, Li Y, Xiang X, Hu H, Zhao S. Accumulation and distribution of uranium in rats after implantation of depleted uranium fragments. J Radiat Res. 2009;50(3):183–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Yousefi H, Najafi A. Assessment of depleted uranium in south-western Iran. J Environ Radioact. 2013;124:160–2.CrossRefPubMedGoogle Scholar
  52. 52.
    Parish R, Horstwood M, Arnason JG, Chenery S, Brewer T, Lloyd NS, et al. Depleted uranium contamination by inhalation exposure and its detection after ~20 years: implications for human health assessment. Sci Total Environ. 2008;390(1):58–68.CrossRefGoogle Scholar
  53. 53.
    Jargin SV. Depleted uranium instead of lead in munitions: the lesser evil. J Radiol Prot. 2014;34(1):249–52.CrossRefPubMedGoogle Scholar
  54. 54.
    Monleau M, Bussy C, Lestaevel P, Houpert P, Paquet F, Chazel V. Bioaccumulation and behavioral effects of depleted uranium in rates exposed to repeated inhalations. Neurosci Lett. 2005;390(1):31–6. Accessed 17 Mar 2016.
  55. 55.
    Wan B, Fleming JT, Schultz TW, Sayler GS. In vitro immune toxicity of depleted uranium: effects on murine macrophages, CD4+ T cells, and gene expression profiles. Environ Health Perspect. 2006;114(1):85–91.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Baverstock KF. Science, politics, and ethics in the lose dose debate. Med Confl Surviv. 2005;21:88–100.CrossRefPubMedGoogle Scholar
  57. 57.
    Carvalho F, Oliveira J. Uranium isotopes in the Balkan’s environment and foods following the use of depleted uranium in the war. Environ Int. 2010;36(4):352–60.CrossRefPubMedGoogle Scholar
  58. 58.
    Al-Hadithi T, Al-Diwan JK, Saleh AM, Shabiba NP. Birth defects in Iraq and the plausibility of environmental exposure: a review. Confl Health. 2012;6. doi: 10.1186/1752-1505-6-3.
  59. 59.
    Alaani S, Tafash M, Busby C, Hamdan M, Blaurock-Busch E. Uranium and other contaminants in hair from the parents of children with congenital anomalies in Fallujah, Iraq. Confl Health. 2011;5:15. doi: 10.1186/1752-1505-5-15.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Busby C. Very low dose fetal exposure to Chernobyl contamination resulted in increases in infant leukemia in Europe and raises questions about current radiation and risk models. Int J Environ Res Public Health. 2009;6(12):3105–14.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Marshall AC. Gulf War depleted uranium risks. J Expo Sci Environ Epidemiol. 2008;18(1):95–108.CrossRefPubMedGoogle Scholar
  62. 62.
    Periyakaruppan A, Kumar F, Sarkar S, Sharma CS, Ramesh GT. Uranium induces oxidative stress in lung epithelial cells. Arch Toxicology. 2007;81(6):389–95.CrossRefGoogle Scholar
  63. 63.
    Schopenhauer A. Aphorismen. Booklassic. 2015[1917]:59 (As translated by author).Google Scholar
  64. 64.
    Dyer O. WHO suppressed evidence on effects of depleted uranium, expert says. BMJ. 2006;333(7576):990.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Society for Hygiene 2016

Authors and Affiliations

  1. 1.Uranium Medical Research CenterWashington, DCUSA

Personalised recommendations