Skip to main content
Log in

Stochastic dividend discount model: covariance of random stock prices

  • Published:
Journal of Economics and Finance Aims and scope Submit manuscript

Abstract

The price of common stocks, defined as the sum of all future discounted dividends, is at the heart of both the dividend discount models (DDM) and the stochastic DDM (SDDM). Gordon and Shapiro (Manag Sci 3:102–110 1956) assume a deterministic and constant dividends’ growth rate, whereas Hurley and Johnson (Financ Anal J 4:50–54 1994, J Portf Manag 25(1)27–31 1998) and Yao (J Portf Manag 23(4)99–103 1997) introduce randomness by letting the growth rate be a finite-state random variable and random dividends behave in a Markovian fashion. In this second case expected stock price is determined, but what if higher-order moments are needed? In order to address a number of financial topics, the present contribution presents an explicit formula for the covariance between (possibly) correlated stock prices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agosto A, Moretto E (2015) Variance matters (in stochastic dividend discount models). Ann Finance 11:283–295

    Article  Google Scholar 

  • D’Amico G (2013) A semi-Markov approach to the stock valuation problem. Ann Finance 9(4):589–610

    Article  Google Scholar 

  • D’Amico G (2017) Stochastic Dividend Discount Model: Risk and Return. Markov Processes and Related Fields 23:349–376

    Google Scholar 

  • Gordon M (1962) The investment, financing, and valuation of the corporation. Irwin, Homewood

    Google Scholar 

  • Gordon MJ, Shapiro E (1956) Capital equipment analysis: the required rate of profit. Manag Sci 3:102–110

    Article  Google Scholar 

  • Hurley W.J. (2013) Calculating first moments and confidence intervals for generalized stochastic dividend discount models. Journal of Mathematical Finance 3:275–279

    Article  Google Scholar 

  • Hurley WJ, Johnson LD (1994) A realistic dividend valuation model. Financ Anal J 50(4):50–54

    Article  Google Scholar 

  • Hurley WJ, Johnson LD (1998) Generalized Markov dividend discount models. J Portf Manag 25(1):27–31

    Article  Google Scholar 

  • Ingersoll JE (1987) Theory of financial decision making. Rowman and Littlefield Publishers, Lanham

    Google Scholar 

  • Koutmos D (2015) Is there a positive risk-return trade-off? a forward-looking approach to measuring the equity premium. European Financial Management 21(5):974–1013

    Article  Google Scholar 

  • Polk C, Thomson S, Vuolteenaho T (2006) Cross-sectional forecasts of the equity premium. J Financ Econ 81(1):101–141

    Article  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Finance 7(1):77–91

    Google Scholar 

  • Williams JB (1938) The theory of investment value. Harvard University Press, Cambridge

    Google Scholar 

  • Yao YF (1997) A trinomial dividend valuation model. J Portf Manag 23(4):99–103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arianna Agosto.

Appendices

Appendix: A

The analytic expression for

$$\mathbb E\left[ \tilde P_{A0}\tilde P_{B0}\right] =\sum\limits_{j = 1}^{+\infty}\sum\limits_{p = 1}^{+\infty } \frac{\mathbb E\left[ \tilde d_{Aj}\tilde d_{Bp}\right]}{(1 + k_{A})^{j}(1 + k_{B})^{p}} $$

is obtained recalling (12). It results that

$$ \mathbb E\left[ \tilde P_{A0}\tilde P_{B0}\right] = d_{A0}d_{B0}\sum\limits_{p = 1}^{+\infty} \left( \underset{\text{\#1}}{\underbrace{\sum\limits_{j = 1}^{p}\frac{(1 + G_{A})^{j}(1 + \bar g_{B})^{p}}{(1 + k_{A})^{j}(1 + k_{B})^{p}}}} + \underset{\text{\#2}}{\underbrace{\sum\limits_{j = p + 1}^{+\infty}\frac{(1 + \bar g_{A})^{j}(1 + G_{B})^{p}}{(1 + k_{A})^{j}(1 + k_{B})^{p}}}}\right). $$
(19)

For ease of notation, let, for i = A,B,

$$\gamma_{\bar g_{i}} = \frac{1 + \bar g_{i}}{1 + k_{i}} \hspace{1cm} \text{and} \hspace{1cm} \gamma_{G_{i}} = \frac{1 + G_{i}}{1 + k_{i}}. $$

Sum #1 becomes

$$\gamma_{\bar g_{B}}^{p}\sum\limits_{j = 1}^{p}\gamma_{G_{A}}^{j} =\frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\left( 1 - \gamma_{G_{A}}^{p}\right)\gamma_{\bar g_{B}}^{p}, $$

while sum #2, that converges to a positive value as soon as \(\bar g_{A} < k_{A}\), reduces to

$$\gamma_{G_{B}}^{p}\sum\limits_{j = p + 1}^{+\infty}\gamma_{\bar g_{A}}^{j} =\frac{\gamma_{\bar g_{A}}}{ 1-\gamma_{\bar g_{A}}}\left( \gamma_{G_{B}}\gamma_{\bar g_{A}}\right)^{p}. $$

Observing that

$$\gamma_{G_{B}}\gamma_{\bar g_{A}} =\frac{\left( 1 + \bar g_{A}\right)\left( 1 + \bar g_{B}\right) + \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]}{\left( 1 + k_{A}\right)\left( 1 + k_{B}\right)} =\gamma_{G_{A}}\gamma_{\bar g_{B}}, $$

sum (19) results being

$$\begin{array}{@{}rcl@{}} \mathbb E \left[ \tilde P_{A0}\tilde P_{B0}\right] & =& d_{A0}d_{B0}\sum\limits_{p = 1}^{+\infty}\left( \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\gamma_{\bar g_{B}}^{p} - \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}} \left( \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)^{p} + \frac{\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}}\left( \gamma_{G_{B}}\gamma_{\bar g_{A}}\right)^{p}\right)\\ & =& d_{A0}d_{B0}\left( \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\sum\limits_{p = 1}^{+\infty }\gamma_{\bar g_{B}}^{p} +\left( \frac{\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}} - \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\right)\sum\limits_{p = 1}^{+\infty }\left( \gamma_{G_{B}}\gamma_{\bar g_{A}}\right)^{p}\right). \end{array} $$

Now, \({\sum }_{p = 1}^{+\infty }\gamma _{\bar g_{B}}^{p}\) converges to

$$\frac{\gamma_{\bar g_{B}}}{1 - \gamma_{\bar g_{B}}} = \frac{1 + \bar g_{B}}{k_{B} - \bar g_{B}} > 0 $$

if \(\bar g_{B} < k_{B}\), whereas \({\sum }_{p = 1}^{+\infty }\left (\gamma _{G_{B}}\gamma _{\bar g_{A}}\right )^{p}\) converges to

$$\frac{\gamma_{G_{A}}\gamma_{\bar g_{B}}}{1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}} =\frac{\left( 1 + \bar g_{A}\right)\left( 1 + \bar g_{B}\right) + \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]} {\left( 1 + k_{A}\right) \left( 1 + k_{B}\right) - \left( 1 + \bar g_{A}\right)\left( 1 + \bar g_{B}\right) - \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]} $$

if

$$\vert\left( 1 + \bar g_{A}\right)\left( 1 + \bar g_{B}\right)+ \text{Cov}\left[ \tilde g_{A},\tilde g_{B}\right]\vert < \left( 1 + k_{A}\right)\left( 1 + k_{B}\right). $$

Moreover, observe that

$$\bar P_{m0} = \frac{d_{m0}\gamma_{\bar g_{m}}}{1 - \gamma_{\bar g_{m}}},\hspace{1cm} m = A,B. $$

Covariance between \(\tilde P_{A0}\) and \(\tilde P_{B0}\) is, then,

$$\begin{array}{@{}rcl@{}} && \text{Cov}\left[ \tilde P_{A0}\tilde P_{B0}\right]\\ & =& d_{A0}d_{B0}\left( \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\frac{\gamma_{\bar g_{B}}}{1 - \gamma_{\bar g_{B}}} +\left( \frac{\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}} - \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\right)\frac{\gamma_{G_{A}}\gamma_{\bar g_{B}}}{1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}} - \frac{\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}}\frac{\gamma_{\bar g_{B}}}{1 - \gamma_{\bar g_{B}}}\right)\\ & =& d_{A0}d_{B0}\left( \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}} - \frac{\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}}\right) \left( \frac{\gamma_{\bar g_{B}}}{1 - \gamma_{\bar g_{B}}} -\frac{\gamma_{G_{A}}\gamma_{\bar g_{B}}}{1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}}\right)\\ & =& d_{A0}d_{B0} \left( \frac{\gamma_{G_{A}} - \gamma_{\bar g_{A}}}{\left( 1 - \gamma_{G_{A}}\right)\left( 1 - \gamma_{\bar g_{A}}\right)}\right) \left( \frac{\gamma_{\bar g_{B}}\left( 1 - \gamma_{G_{A}}\right)}{\left( 1 - \gamma_{\bar g_{B}}\right)\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)}\right)\\ & =& \left( \frac{d_{A0}\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}}\right) \left( \frac{d_{B0}\gamma_{\bar g_{B}}}{1 - \gamma_{\bar g_{B}}}\right) \left( \frac{\gamma_{G_{A}} - \gamma_{\bar g_{A}}}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)}\right)= \frac{\bar P_{A0}\bar P_{B0}\left( \gamma_{G_{A}} - \gamma_{\bar g_{A}}\right)}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)}. \end{array} $$
(20)

Now, recall the definition of \(\gamma _{G_{A}}\), \(\gamma _{\bar g_{A}}\), \(\gamma _{\bar g_{B}}\), and GA. Then,

$$\gamma_{G_{A}} - \gamma_{\bar g_{A}} =\frac{\text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]}{(1 + k_{A})(1 + \bar g_{B})}, $$

and

$$\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right) =\frac{\left( 1 + \bar g_{A}\right)\left( (1 + k_{A})(1 + k_{B}) - (1 + \bar g_{A})(1 + \bar g_{B}) - \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]\right)}{(1 + k_{A})^{2}(1 + k_{B})} $$

Substituting these expressions in (20),

$$\begin{array}{@{}rcl@{}} && \text{Cov}\left[ \tilde P_{A0}\tilde P_{B0}\right]\\ & =& \bar P_{A0}\bar P_{B0}\times \frac{\text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]}{(1 + k_{A})(1 + \bar g_{B})} \times\frac{(1 + k_{A})^{2}(1 + k_{B})}{(1 + \bar g_{A})\left( (1 + k_{A})(1 + k_{B}) - (1 + \bar g_{A})(1 + \bar g_{B}) - \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]\right)}\\ & =& \bar P_{A0}\bar P_{B0}\times \frac{(1 + k_{A})(1 + k_{B})}{(1 + \bar g_{A})(1 + \bar g_{B})} \times\frac{\text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]}{(1 + k_{A})(1 + k_{B}) - (1 + \bar g_{A})(1 + \bar g_{B}) - \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]}. \end{array} $$

This proves the claimed formula.

Appendix: B

The analytic expression for

$$\mathbb E\left[ \tilde P_{At}\tilde P_{Bt}\right] =\sum\limits_{j = t + 1}^{+\infty}\sum\limits_{p = t + 1}^{+\infty } \frac{\mathbb E\left[ \tilde d_{Aj}\tilde d_{Bp}\right]}{(1 + k_{A})^{j - t}(1 + k_{B})^{p - t}} $$

is obtained analogously to that of \(\mathbb E\left [ \tilde P_{A0}\tilde P_{B0}\right ]\) by means of the substitutions u := jt and v := pt, and recalling that

$$\mathbb E\left[ \tilde d_{A,u + t}\tilde d_{B,v + t}\right] =\left\{\begin{array}{ll} d_{A0}d_{B0}\left( 1 + G_{A}\right)^{u + t}\left( 1 + \bar g_{B}\right)^{v + t} u \leq v \\ d_{A0}d_{B0}\left( 1 + G_{B}\right)^{v + t}\left( 1 + \bar g_{A}\right)^{u + t} u >v. \end{array}\right. $$

Therefore

$$ \mathbb E\left[ \tilde P_{At}\tilde P_{Bt}\right] = d_{A0}d_{B0}\sum\limits_{v = 1}^{+\infty} \left( \underset{\text{\#1}}{\underbrace{\sum\limits_{u = 1}^{v}\frac{(1 + G_{A})^{u + t}(1 + \bar g_{B})^{v + t}}{(1 + k_{A})^{u}(1 + k_{B})^{v}}}} + \underset{\text{\#2}}{\underbrace{\sum\limits_{u = v + 1}^{+\infty}\frac{(1 + \bar g_{A})^{u + t}(1 + G_{B})^{v + t}}{(1 + k_{A})^{u}(1 + k_{B})^{v}}}}\right). $$
(21)

Under the assumptions of Proposition 1, sum #1 becomes

$$(1 + G_{A})^{t}(1 + \bar g_{B})^{t}\gamma_{\bar g_{B}}^{v}\sum\limits_{u = 1}^{v}\gamma_{G_{A}}^{u} =(1 + G_{A})^{t}(1 + \bar g_{B})^{t}\frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\left( 1 - \gamma_{G_{A}}^{v}\right)\gamma_{\bar g_{B}}^{v}, $$

while sum #2 reduces to

$$(1 + G_{B})^{t}(1 + \bar g_{A})^{t}\gamma_{G_{B}}^{v}\sum\limits_{u = v + 1}^{+\infty}\gamma_{\bar g_{A}}^{u} =(1 + G_{B})^{t}(1 + \bar g_{A})^{t}\frac{\gamma_{\bar g_{A}}}{ 1-\gamma_{\bar g_{A}}}\left( \gamma_{G_{B}}\gamma_{\bar g_{A}}\right)^{v}. $$

Recalling that

$$(1 + G_{A})(1 + \bar g_{B}) =(1 + G_{B})(1 + \bar g_{A}) =(1 + \bar g_{A})(1 + \bar g_{B}) + \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right], $$

and that \(\gamma _{G_{B}}\gamma _{\bar g_{A}} = \gamma _{G_{A}}\gamma _{\bar g_{B}}\), sum (21) results being

$$\begin{array}{@{}rcl@{}} &&\mathbb E \left[ \tilde P_{At}\tilde P_{Bt}\right]\\ & = &f(t) \sum\limits_{v = 1}^{+\infty}\left( \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\gamma_{\bar g_{B}}^{v} - \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}} \left( \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)^{v} + \frac{\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}}\left( \gamma_{G_{B}}\gamma_{\bar g_{A}}\right)^{v}\right)\\ & =& f(t) \left( \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\sum\limits_{v = 1}^{+\infty }\gamma_{\bar g_{B}}^{v} +\left( \frac{\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}} - \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\right){\sum}_{v = 1}^{+\infty }\left( \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)^{v}\right)\\ & =& f(t) \left( \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\frac{\gamma_{\bar g_{B}}}{1 - \gamma_{\bar g_{B}}} +\left( \frac{\gamma_{\bar g_{A}}}{1 - \gamma_{\bar g_{A}}} - \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\right)\frac{\gamma_{G_{A}}\gamma_{\bar g_{B}}}{1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}}\right), \end{array} $$

where

$$f(t) = d_{A0}d_{B0}\left( (1 + \bar g_{A})(1 + \bar g_{B}) + \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]\right)^{t}. $$

Observing that

$$f(t) = \bar P_{A0}\bar P_{B0}\left( (1 + \bar g_{A})(1 + \bar g_{B}) + \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]\right)^{t} \frac{1 - \gamma_{\bar g_{A}}}{\gamma_{\bar g_{A}}}\frac{1 - \gamma_{\bar g_{B}}}{\gamma_{\bar g_{B}}}, $$

one can write

$$\mathbb E \left[ \tilde P_{At}\tilde P_{Bt}\right] = g(t) \left( \frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\frac{1 - \gamma_{\bar g_{A}}}{\gamma_{\bar g_{A}}} + \left( 1 - \frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{A}}\right)}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\right)}\right) \frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{B}}\right)}{1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}}\right), $$

where

$$g(t) = \bar P_{A0}\bar P_{B0}\left( (1 + \bar g_{A})(1 + \bar g_{B}) + \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]\right)^{t}. $$

Trivial algebra proves that

$$\frac{\gamma_{G_{A}}}{1 - \gamma_{G_{A}}}\frac{1 - \gamma_{\bar g_{A}}}{\gamma_{\bar g_{A}}} +\left( 1 - \frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{A}}\right)}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\right)}\right) \frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{B}}\right)}{1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}} =\frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{A}}\gamma_{\bar g_{B}}\right)}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)}, $$

so that

$$\mathbb E \left[ \tilde P_{At}\tilde P_{Bt}\right] =\bar P_{A0}\bar P_{B0}\frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{A}}\gamma_{\bar g_{B}}\right)}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)} \left( (1 + \bar g_{A})(1 + \bar g_{B}) + \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]\right)^{t}. $$

Moreover, for m = A,B we have

$$\bar P_{mt} =\mathbb E\left[\sum\limits_{j = t + 1}^{+\infty}\frac{\tilde d_{mj}}{(1 + k_{m})^{j - t}}\right] =\mathbb E\left[\sum\limits_{u = 1}^{+ \infty}\frac{\tilde d_{m,u + t}}{\left( 1 + k_{m}\right)^{u}}\right] =\bar P_{m0}\left( 1 + \bar g_{m}\right)^{t}, $$

and covariance between \(\tilde P_{At}\) and \(\tilde P_{Bt}\) is

$$\begin{array}{@{}rcl@{}} && \text{Cov}\left[ \tilde P_{At}\tilde P_{Bt}\right]\\ & =& \bar P_{A0}\bar P_{B0}\frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{A}}\gamma_{\bar g_{B}}\right)}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)}\left( (1 + \bar g_{A})(1 + \bar g_{B}) + \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]\right)^{t} -\bar P_{A0}\bar P_{B0}\left( 1 + \bar g_{A}\right)^{t}\left( 1 + \bar g_{B}\right)^{t}\\ & =& \bar P_{A0}\bar P_{B0}\left( 1 + \bar g_{A}\right)^{t}\left( 1 + \bar g_{B}\right)^{t} \left( \frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{A}}\gamma_{\bar g_{B}}\right)}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)} \left( 1 + \frac{\text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]}{(1 + \bar g_{A})(1 + \bar g_{B})}\right)^{t} -1\right). \end{array} $$

Recalling the definitions of \(\gamma _{G_{A}}\), \(\gamma _{\bar g_{A}}\), \(\gamma _{\bar g_{B}}\), and GA,

$$\frac{\gamma_{G_{A}}\left( 1 - \gamma_{\bar g_{A}}\gamma_{\bar g_{B}}\right)}{\gamma_{\bar g_{A}}\left( 1 - \gamma_{G_{A}}\gamma_{\bar g_{B}}\right)} =\left( 1 + \frac{\text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]}{(1 + \bar g_{A})(1 + \bar g_{B})}\right) \frac{(1 + k_{A})(1 + k_{B}) - (1 + \bar g_{A})(1 + \bar g_{B})}{(1 + k_{A})(1 + k_{B}) - (1 + \bar g_{A})(1 + \bar g_{B}) - \text{Cov}\left[\tilde g_{A},\tilde g_{B}\right]}, $$

and the claimed formula holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agosto, A., Mainini, A. & Moretto, E. Stochastic dividend discount model: covariance of random stock prices. J Econ Finan 43, 552–568 (2019). https://doi.org/10.1007/s12197-018-9455-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12197-018-9455-9

Keywords

JEL Classification

Navigation