Skip to main content

Advertisement

Log in

Elucidating Mechanotransduction Processes During Magnetomechanical Neuromodulation Mediated by Magnetic Nanodiscs

  • SI: 2023 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Purpose

Noninvasive cell-type-specific manipulation of neural signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Magnetic nanotechnologies have emerged as non-invasive neuromodulation approaches with high spatiotemporal control. We recently developed a wireless force-induced neurostimulation platform utilizing micro-sized magnetic discs (MDs) and low-intensity alternating magnetic fields (AMFs). When targeted to the cell membrane, MDs AMFs-triggered mechanoactuation enhances specific cell membrane receptors resulting in cell depolarization. Although promising, it is critical to understand the role of mechanical forces in magnetomechanical neuromodulation and their transduction to molecular signals for its optimization and future translation.

Methods

MDs are fabricated using top-down lithography techniques, functionalized with polymers and antibodies, and characterized for their physical properties. Primary cortical neurons co-cultured with MDs and transmembrane protein chemical inhibitors are subjected to 20 s pulses of weak AMFs (18 mT, 6 Hz). Calcium cell activity is recorded during AMFs stimulation.

Results

Neuronal activity in primary rat cortical neurons is evoked by the AMFs-triggered actuation of targeted MDs. Ion channel chemical inhibition suggests that magnetomechanical neuromodulation results from MDs actuation on Piezo1 and TRPC1 mechanosensitive ion channels. The actuation mechanisms depend on MDs size, with cell membrane stretch and stress caused by the MDs torque being the most dominant.

Conclusions

Magnetomechanical neuromodulation represents a tremendous potential since it fulfills the requirements of negligible heating (ΔT < 0.1 °C) and weak AMFs (< 100 Hz), which are limiting factors in the development of therapies and the design of clinical equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  1. Allenby, C., et al. Transcranial direct current brain stimulation decreases impulsivity in ADHD. Brain Stimul. 11:974–981, 2018.

    Article  Google Scholar 

  2. Bagriantsev, S. N., E. O. Gracheva, and P. G. Gallagher. Piezo proteins: regulators of mechanosensation and other cellular processes*. J. Biol. Chem. 289:31673–31681, 2014.

    Article  Google Scholar 

  3. Banerjee, A., et al. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release. 238:176–185, 2016.

    Article  Google Scholar 

  4. Berlim, M. T., N. H. Neufeld, and F. Van den Eynde. Repetitive transcranial magnetic stimulation (rTMS) for obsessive–compulsive disorder (OCD): an exploratory meta-analysis of randomized and sham-controlled trials. J. Psychiatric Res. 47:999–1006, 2013.

    Article  Google Scholar 

  5. Carvalho-de-Souza, J. L., et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 86:207–217, 2015.

    Article  Google Scholar 

  6. Chen, L., et al. Continuous shape- and spectroscopy-tuning of hematite nanocrystals. Inorg. Chem. 49:8411–8420, 2010.

    Article  Google Scholar 

  7. Chen, R., et al. Wireless magnetothermal deep brain stimulation. Science. 347:1477–1480, 2015.

    Article  Google Scholar 

  8. Cheng, Y., et al. The events relating to lanthanide ions enhanced permeability of human erythrocyte membrane: binding, conformational change, phase transition, perforation and ion transport. Chemico-biol. Interact. 121:267–289, 1999.

    Article  Google Scholar 

  9. Cheng, Y., et al. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma. J. Control. Release. 223:75–84, 2016.

    Article  Google Scholar 

  10. Christensen, A. P., and D. P. Corey. TRP channels in mechanosensation: direct or indirect activation? Nat. Rev. Neurosci. 8:510–521, 2007.

    Article  Google Scholar 

  11. Chu, P.-C., et al. Focused ultrasound-induced blood-brain barrier opening: association with mechanical index and cavitation index analyzed by dynamic contrast-enhanced magnetic-resonance imaging. Sci. Rep. 6:33264, 2016.

    Article  Google Scholar 

  12. Collier, C., et al. Wireless force-inducing neuronal stimulation mediated by high magnetic moment microdiscs. Adv. Healthc Mater. 11:2101826, 2022.

    Article  Google Scholar 

  13. Coppola, G., et al. Clinical neurophysiology of migraine with aura. J. Headache Pain. 20:42–42, 2019.

    Article  Google Scholar 

  14. Corrotte, M., et al. Approaches for Plasma Membrane wounding and Assessment of Lysosome-Mediated Repair Responses. Amsterdam: Elsevier, pp. 139–158, 2015.

    Google Scholar 

  15. Costanzo, F., et al. New treatment perspectives in adolescents with anorexia nervosa: the efficacy of non-invasive brain-directed treatment. Front. Behav. Neurosci. 12:133, 2018.

    Article  Google Scholar 

  16. Deo, C. Hybrid fluorescent probes for imaging membrane tension inside living cells. ACS Cent. Sci. 6:1285–1287, 2020.

    Article  Google Scholar 

  17. Dinur-Klein, L., et al. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective randomized controlled trial. Biol. Psychiatry. 76:742–749, 2014.

    Article  Google Scholar 

  18. Dolai, J., K. Mandal, and N. R. Jana. Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater. 4:6471–6496, 2021.

    Article  Google Scholar 

  19. Dombroski, J. A., et al. Channeling the force: piezo1 mechanotransduction in cancer metastasis. Cells. 10:2815, 2021.

    Article  Google Scholar 

  20. Dumas, R. K., et al. Temperature induced single domain–vortex state transition in sub-100nm Fe nanodots. Appl. Phys. Lett.91:202501, 2007.

    Article  Google Scholar 

  21. Duyn, J. H. Studying brain microstructure with magnetic susceptibility contrast at high-field. NeuroImage. 168:152–161, 2018.

    Article  Google Scholar 

  22. Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annal. Phys. 322:549–560, 1905.

    Article  MATH  Google Scholar 

  23. Endo, M., H. Maruoka, and S. Okabe. Advanced technologies for local neural circuits in the cerebral cortex. Front. Neuroanat.15:757499, 2021.

    Article  Google Scholar 

  24. Fattah, A.R.A., et al., Local actuation of organoids by magnetic nanoparticles. bioRxiv, 2022: p. 2022.03.17.484696.

  25. Freissmuth, M., et al. Suramin analogues as subtype-selective G protein inhibitors. Mol Pharmacol. 49:602–611, 1996.

    Google Scholar 

  26. García-Calvo, J., et al. Fluorescent membrane tension probes for super-resolution microscopy: combining mechanosensitive cascade switching with dynamic-covalent ketone chemistry. J. Am. Chem. Soc. 142:12034–12038, 2020.

    Article  Google Scholar 

  27. George, M. S., J. J. Taylor, and B. Short. Chapter 33 - Treating the depressions with superficial brain stimulation methods. In: Handbook of Clinical Neurology, edited by A. M. Lozano, and M. Hallett. Amsterdam: Elsevier, 2013, pp. 399–413.

    Google Scholar 

  28. Ghanouni, P., et al. Transcranial MRI-guided focused ultrasound: a review of the technologic and neurologic applications. Am. J. Roentgenol. 205:150–159, 2015.

    Article  Google Scholar 

  29. Gnanasambandam, R., et al. GsMTx4: mechanism of inhibiting mechanosensitive ion channels. Biophys. J. 112:31–45, 2017.

    Article  Google Scholar 

  30. Gregurec, D., et al. Magnetic vortex nanodiscs enable remote magnetomechanical neural stimulation. ACS Nano. 14:8036–8045, 2020.

    Article  Google Scholar 

  31. Guhn, A., et al. Medial prefrontal cortex stimulation modulates the processing of conditioned fear. Front. Behav. Neurosci. 8:44, 2014.

    Article  Google Scholar 

  32. Guntnur, R. T., et al. Phase transition characterization of poly(oligo(ethylene glycol)methyl ether methacrylate) brushes using the quartz crystal microbalance with dissipation. Soft Matter. 17:2530–2538, 2021.

    Article  Google Scholar 

  33. Heeren, A., et al. Impact of transcranial direct current stimulation on attentional bias for threat: a proof-of-concept study among individuals with social anxiety disorder. Soc. Cogn. Affect. Neurosci. 12:251–260, 2017.

    Article  Google Scholar 

  34. Henstock, J. R., et al. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: applications for injectable cell therapy. Stem Cells Transl. Med. 3:1363–1374, 2014.

    Article  Google Scholar 

  35. Ho, D. N. Chapter 15 - Magnetic Resonance Imaging and Alternating Magnetic Fields. In: Cancer Theranostics, edited by X. Chen, and S. Wong. Oxford: Academic Press, 2014, pp. 255–268.

    Chapter  Google Scholar 

  36. Hope, J. M., et al. Activation of Piezo1 sensitizes cells to TRAIL-mediated apoptosis through mitochondrial outer membrane permeability. Cell Death Dis. 10:837, 2019.

    Article  Google Scholar 

  37. Huang, H., et al. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat Nano. 5:602–606, 2010.

    Article  Google Scholar 

  38. Hughes, S., et al. Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface. 5:855–863, 2008.

    Article  Google Scholar 

  39. Jeong, S., et al. Hydrogel magnetomechanical actuator nanoparticles for wireless remote control of mechanosignaling in vivo. Nano Lett. 23:5227–5235, 2023.

    Article  Google Scholar 

  40. Kanczler Janos, M., S. H. S. Magnay Julia, G. David, O. Oreffo Rechard, P. Dobson Jon, and J. El Haj Alicia. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng. Part A. 16:3241–3250, 2010.

    Article  Google Scholar 

  41. Kim, D.-H., et al. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9:165–171, 2010.

    Article  Google Scholar 

  42. Knoblauch, S. V., et al. Chemical activation and mechanical sensitization of piezo1 enhance TRAIL-mediated apoptosis in glioblastoma cells. ACS Omega. 8:16975–16986, 2023.

    Article  Google Scholar 

  43. Lee, J.-U., et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20:1029–1036, 2021.

    Article  Google Scholar 

  44. Legon, W., et al. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci. Rep. 8:10007, 2018.

    Article  Google Scholar 

  45. Levkovitz, Y., et al. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2:188–200, 2009.

    Article  Google Scholar 

  46. Lin, Y., C. Zhang, and Y. Wang. A randomized controlled study of transcranial direct current stimulation in treatment of generalized anxiety disorder. Brain Stimul. 12:403, 2019.

    Google Scholar 

  47. Liu, H., et al. Piezo1 channels as force sensors in mechanical force-related chronic inflammation. Front. Immunol. 13:816149, 2022.

    Article  Google Scholar 

  48. Love, J. C., et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105:1103–1170, 2005.

    Article  Google Scholar 

  49. Luana, L., and A. C. Rego. Isolation and maintenance of striatal neurons. Bio-protocol. 8:8, 2018.

    Google Scholar 

  50. Ma, Z., et al. TCR triggering by pMHC ligands tethered on surfaces via poly(ethylene glycol) depends on polymer length. PLOS ONE.9:e112292, 2014.

    Article  Google Scholar 

  51. Madsen, S. J., et al. Photodynamic therapy of newly implanted glioma cells in the rat brain. Lasers Surg. Med. 38:540–548, 2006.

    Article  Google Scholar 

  52. Maroto, R., et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell Biol. 7:179–185, 2005.

    Article  Google Scholar 

  53. Matthews, B. D., et al. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface β1 integrins. Integr. Biol. 2:435–442, 2010.

    Article  Google Scholar 

  54. Matyas, F., et al. Motor control by sensory cortex. Science. 330:1240, 2010.

    Article  Google Scholar 

  55. Meiser, J., D. Weindl, and K. Hiller. Complexity of dopamine metabolism. Cell Commun. Signal. 11:34, 2013.

    Article  Google Scholar 

  56. Mejía-López, J., et al. Vortex state and effect of anisotropy in sub-100-nm magnetic nanodots. J. Appl. Phys.100:104319, 2006.

    Article  Google Scholar 

  57. Mejía-López, J., et al. Development of vortex state in circular magnetic nanodots: theory and experiment. Phys. Rev. B.81:184417, 2010.

    Article  Google Scholar 

  58. Mendonca, M. E., et al. Transcranial direct current stimulation combined with aerobic exercise to optimize analgesic responses in fibromyalgia: a randomized placebo-controlled clinical trial. Front Hum Neurosci. 10:68, 2016.

    Article  Google Scholar 

  59. Momin, A., et al. Channeling force in the brain: mechanosensitive ion channels choreograph mechanics and malignancies. Trends Pharmacol. Sci. 42:367–384, 2021.

    Article  Google Scholar 

  60. Mora, B., et al. Cost-effective design of high-magnetic moment nanostructures for biotechnological applications. ACS Appl. Mater. Interfaces. 10:8165–8172, 2018.

    Article  Google Scholar 

  61. Morales, R., et al. Ultradense arrays of sub-100 nm Co/CoO nanodisks for spintronics applications. ACS Appl. Nano Mater. 3:4037–4044, 2020.

    Article  Google Scholar 

  62. O’Neil, R. G., and S. Heller. The mechanosensitive nature of TRPV channels. Pflüg. Arch. 451:193–203, 2005.

    Article  Google Scholar 

  63. Papakostas, G. I., and D. F. Ionescu. Towards new mechanisms: an update on therapeutics for treatment-resistant major depressive disorder. Mol. Psychiatry. 20:1142–1150, 2015.

    Article  Google Scholar 

  64. Peixoto, L., et al. Magnetic nanostructures for emerging biomedical applications. Appl. Phys. Rev.7:011310, 2020.

    Article  Google Scholar 

  65. Peng, D., et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset. Adv. Mater. 32:1907747, 2020.

    Article  Google Scholar 

  66. Pensa, E., et al. The chemistry of the sulfur-gold interface: in search of a unified model. Acc. Chem. Res. 45:1183–1192, 2012.

    Article  Google Scholar 

  67. Perin, R., T. K. Berger, and H. Markram. A synaptic organizing principle for cortical neuronal groups. Proc. Natl. Acad. Sci. USA. 108:5419–5424, 2011.

    Article  Google Scholar 

  68. Raij, T., et al. Prefrontal Cortex Stimulation Enhances Fear Extinction Memory in Humans. Biol. Psychiatry. 84:129–137, 2018.

    Article  Google Scholar 

  69. Ramos, J. I., and S. E. Moya. Effect of the density of ATRP thiol initiators in the yield and water content of grafted-from PMETAC brushes. A study by means of QCM-D and spectroscopic ellipsometry combined in a single device. Macromol. Chem. Phys. 213:549–556, 2012.

    Article  Google Scholar 

  70. Reviakine, I., D. Johannsmann, and R. P. Richter. Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal. Chem. 83:8838–8848, 2011.

    Article  Google Scholar 

  71. Romero, G., et al. Modulating cell signalling in vivo with magnetic nanotransducers. Nat.Rev. Methods Primers. 2:92, 2022.

    Article  Google Scholar 

  72. Rotherham, M., et al. Magnetic activation of TREK1 triggers stress signalling and regulates neuronal branching in SH-SY5Y cells. Front. Med. Technol. 4:1, 2022.

    Article  Google Scholar 

  73. Sarkar, A., A. Dowker, and R. Cohen Kadosh. Cognitive enhancement or cognitive cost: trait-specific outcomes of brain stimulation in the case of mathematics anxiety. J Neurosci. 34:16605–16610, 2014.

    Article  Google Scholar 

  74. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitsch. Phys. 155:206–222, 1959.

    Article  Google Scholar 

  75. Shen, Y., et al. Elongated nanoparticle aggregates in cancer cells for mechanical destruction with low frequency rotating magnetic field. Theranostics. 7:1735–1748, 2017.

    Article  Google Scholar 

  76. Spassova, M. A., et al. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc. Natl. Acad. Sci. USA. 103:16586–16591, 2006.

    Article  Google Scholar 

  77. Stummer, W., et al. Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ALA-induced porphyrins: a prospective study in 52 consecutive patients. J. Neurosurg. 93:1003–1013, 2000.

    Article  Google Scholar 

  78. Tabatabaei, S. N., et al. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J. Control. Release. 206:49–57, 2015.

    Article  Google Scholar 

  79. Trevizol, A. P., et al. Transcranial magnetic stimulation for obsessive-compulsive disorder: an updated systematic review and meta-analysis. J. ECT. 32:4, 2016.

    Article  Google Scholar 

  80. Vazana, U., et al. Glutamate-mediated blood-brain barrier opening: implications for neuroprotection and drug delivery. J. Neurosci. 36:7727–7739, 2016.

    Article  Google Scholar 

  81. Vriens, J., G. Appendino, and B. Nilius. Pharmacology of vanilloid transient receptor potential cation channels. Mol. Pharmacol. 75:1262–1279, 2009.

    Article  Google Scholar 

  82. Wilde, C., et al. Translating the force—mechano-sensing GPCRs. Am. J. Physiol. Cell Physiol. 322:1047–1060, 2022.

    Article  Google Scholar 

  83. Wu, X., et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics. Proc. Natl. Acad. Sci. USA. 116:26332–26342, 2019.

    Article  Google Scholar 

  84. Yang, Y., et al. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 Nanodisc. Adv. Funct. Mater. 25:812–820, 2015.

    Article  Google Scholar 

  85. Yang, Y., et al. Size-dependent microwave absorption properties of Fe3O4 nanodiscs. RSC Adv. 6:25444–25448, 2016.

    Article  Google Scholar 

  86. Yoo, S., et al. Electro-optical neural platform integrated with nanoplasmonic inhibition interface. ACS Nano. 10:4274–4281, 2016.

    Article  Google Scholar 

  87. Yoo, S., et al. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat. Commun. 13:493, 2022.

    Article  Google Scholar 

  88. Yoshimura, Y., J. L. M. Dantzker, and E. M. Callaway. Excitatory cortical neurons form fine-scale functional networks. Nature. 433:868–873, 2005.

    Article  Google Scholar 

  89. Zhao, B., et al. Quantifying tensile forces at cell-cell junctions with a DNA-based fluorescent probe. Chem. Sci. 11:8558–8566, 2020.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the NIH National Institute of Biomedical Imaging and Bioengineering (NIBIB), Grant R56EB031848. Rafael Morales and Carolina Redondo acknowledge funding support from the EU Horizon 2020 MSCA grant agreement No 734801, grant No PID2019-104604RB-C33/AEI/10.13039/501100011033, and the Basque Country grant No IT1491-22. Amanda Gomez thanks the National Science Foundation for their support under the Graduate Research Fellowship Program (Award 1000317285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Romero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 5356 KB)

Supplementary file2 (MP4 5189 KB)

Supplementary file2 (MP4 510 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, A., Muzzio, N., Dudek, A. et al. Elucidating Mechanotransduction Processes During Magnetomechanical Neuromodulation Mediated by Magnetic Nanodiscs. Cel. Mol. Bioeng. 16, 283–298 (2023). https://doi.org/10.1007/s12195-023-00786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-023-00786-8

Keywords

Navigation