Skip to main content

Advertisement

Log in

Amelioration of Subglottic Stenosis by Antimicrobial Peptide Eluting Endotracheal Tubes

  • SI: 2023 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Pediatric subglottic stenosis (SGS) results from prolonged intubation where scar tissue leads to airway narrowing that requires invasive surgery. We have recently discovered that modulating the laryngotracheal microbiome can prevent SGS. Herein, we show how our patent-pending antimicrobial peptide-eluting endotracheal tube (AMP-ET) effectively modulates the local airway microbiota resulting in reduced inflammation and stenosis resolution.

Materials and Methods

We fabricated mouse-sized ETs coated with a polymeric AMP-eluting layer, quantified AMP release over 10 days, and validated bactericidal activity for both planktonic and biofilm-resident bacteria against Staphylococcus aureus and Pseudomonas aeruginosa. Ex vivo testing: we inserted AMP-ETs and ET controls into excised laryngotracheal complexes (LTCs) of C57BL/6 mice and assessed biofilm formation after 24 h. In vivo testing: AMP-ETs and ET controls were inserted in sham or SGS-induced LTCs, which were then implanted subcutaneously in receptor mice, and assessed for immune response and SGS severity after 7 days.

Results

We achieved reproducible, linear AMP release at 1.16 µg/day resulting in strong bacterial inhibition in vitro and ex vivo. In vivo, SGS-induced LTCs exhibited a thickened scar tissue typical of stenosis, while the use of AMP-ETs abrogated stenosis. Notably, SGS airways exhibited high infiltration of T cells and macrophages, which was reversed with AMP-ET treatment. This suggests that by modulating the microbiome, AMP-ETs reduce macrophage activation and antigen specific T cell responses resolving stenosis progression.

Conclusion

We developed an AMP-ET platform that reduces T cell and macrophage responses and reduces SGS in vivo via airway microbiome modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data is available upon request.

References

  1. Ali Akbari Ghavimi, S., et al. Drug delivery to the pediatric upper airway. Adv. Drug Deliv. Rev. 174:168–189, 2021.

    Article  Google Scholar 

  2. Aronson, M. R., et al. Re-engineering antimicrobial peptides into oncolytics targeting drug-resistant ovarian cancers. Cell. Mol. Bioeng. 13:447–461, 2020.

    Article  Google Scholar 

  3. Aronson, M. R., S. Ali Akbari Ghavimi, P. M. Gehret, I. N. Jacobs, and R. Gottardi. Drug-eluting endotracheal tubes for preventing bacterial inflammation in subglottic stenosis. Laryngoscope. 132:1356–1363, 2022.

    Article  Google Scholar 

  4. Aronson, M. R., A. W. Simonson, L. M. Orchard, M. Llinás, and S. H. Medina. Lipopeptisomes: anticancer peptide-assembled particles for fusolytic oncotherapy. Acta Biomater. 80:269–277, 2018.

    Article  Google Scholar 

  5. Avelino, M. A. G., L. da Silveira Botacin, and M. A. C. Coutinho. Treatment of complex laryngotracheal stenosis in childhood—experience of a tertiary University Hospital from 2016 to 2019. Ann. Pediatr. Surg. 17:1–7, 2021.

    Article  Google Scholar 

  6. Ballantine, R. D., Y. X. Li, P. Y. Qian, and S. A. Cochrane. Rational design of new cyclic analogues of the antimicrobial lipopeptide tridecaptin A 1. Chem. Commun. 54:10634–10637, 2018.

    Article  Google Scholar 

  7. Balmert, S. C., et al. Positive charge of “Sticky” peptides and proteins impedes release from negatively charged PLGA matrices. J. Mater. Chem. B. 3:4723, 2015.

    Article  Google Scholar 

  8. Battista, F., R. Oliva, P. Del Vecchio, R. Winter, and L. Petraccone. Insights into the action mechanism of the antimicrobial peptide Lasioglossin III. Int. J. Mol. Sci. 22:2857, 2021.

    Article  Google Scholar 

  9. Cremin, K., et al. Scanning ion conductance microscopy reveals differences in the ionic environments of gram-positive and negative bacteria. Anal. Chem. 92:16024–16032, 2020.

    Article  Google Scholar 

  10. Davis, R. J., et al. Quantitative assessment of the immune microenvironment in patients with iatrogenic laryngotracheal stenosis. Otolarygnol. Head Neck Surg. 164:1257–1264, 2020.

    Article  Google Scholar 

  11. Davis, R. J., and A. T. Hillel. Inflammatory pathways in the pathogenesis of iatrogenic laryngotracheal stenosis: what do we know? Transl. Cancer Res. 9:2108–2116, 2020.

    Article  Google Scholar 

  12. Di Simone, S. K., I. Rudloff, C. A. Nold-Petry, S. C. Forster, and M. F. Nold. Understanding respiratory microbiome–immune system interactions in health and disease. Sci. Transl. Med. 15:eabq5126, 2023.

    Article  Google Scholar 

  13. Dorris, E. R., J. Russell, and M. Murphy. Post-intubation subglottic stenosis: aetiology at the cellular and molecular level. Eur. Respir. Rev. 30:1–15, 2021.

    Article  Google Scholar 

  14. Doyle, J., et al. nNOS inhibition, antimicrobial and anticancer activity of the amphibian skin peptide, citropin 1.1 and synthetic modifications. Eur. J. Biochem. 270:1141–1153, 2003.

    Article  Google Scholar 

  15. Duvvuri, M., et al. Engineering an immunomodulatory drug-eluting stent to treat laryngotracheal stenosis. Biomater. Sci. 7:1874, 2019.

    Article  Google Scholar 

  16. Duvvuri, M., et al. Design of a biocompatible drug-eluting tracheal stent in mice with laryngotracheal stenosis. J. Vis. Exp. 2020. https://doi.org/10.3791/60483.

    Article  Google Scholar 

  17. Foote, A. G., V. Lungova, and S. L. Thibeault. Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation. Cell. Mol. Life Sci. 79:1–21, 2022.

    Article  Google Scholar 

  18. Gelbard, A., et al. Idiopathic subglottic stenosis is associated with activation of the inflammatory IL-17A/IL-23 axis. Laryngoscope. 126:E356–E361, 2016.

    Article  Google Scholar 

  19. Gelbard, A., et al. Molecular analysis of idiopathic subglottic stenosis for Mycobacterium species. Laryngoscope. 127(1):179–185, 2017.

    Article  Google Scholar 

  20. Gelbard, A., et al. The proximal airway is a reservoir for adaptive immunologic memory in idiopathic subglottic stenosis. Laryngoscope. 131:610–617, 2021.

    Article  Google Scholar 

  21. Ghosh, A., et al. Cellular adaptive inflammation mediates airway granulation in a murine model of subglottic stenosis. Otolaryngol. Neck Surg. 144:927–933, 2011.

    Article  Google Scholar 

  22. Haft, S., et al. Inflammatory protein expression in human subglottic stenosis tissue mirrors that in a murine model. Ann. Otol. Rhinol. Laryngol. 123:65–70, 2014.

    Article  Google Scholar 

  23. Hewitt, R. J., and C. M. Lloyd. Regulation of immune responses by the airway epithelial cell landscape. Nat. Rev. Immunol. 21:347–362, 2021.

    Article  Google Scholar 

  24. Hillel, A. T., et al. Dysregulated macrophages are present in bleomycin-induced murine laryngotracheal stenosis. Otolaryngol. Neck Surg. 153:250, 2015.

    Article  Google Scholar 

  25. Hillel, A. T., et al. Laryngotracheal microbiota in adult laryngotracheal stenosis. mSphere. 4(3):e00211, 2019.

    Article  Google Scholar 

  26. Ingólfsson, H. I., et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 136:14554–14559, 2014.

    Article  Google Scholar 

  27. Jefferson, N. D., A. P. Cohen, and M. J. Rutter. Subglottic stenosis. Semin. Pediatr. Surg. 25:138–143, 2016.

    Article  Google Scholar 

  28. Kleijn, L. H. J., et al. Total synthesis of Laspartomycin C and characterization of its antibacterial mechanism of action. J. Med. Chem. 59:3569–3574, 2016.

    Article  Google Scholar 

  29. Kotsogianni, I., T. M. Wood, F. M. Alexander, S. A. Cochrane, and N. I. Martin. Binding studies reveal phospholipid specificity and its role in the calcium-dependent mechanism of action of daptomycin. ACS Infect. Dis. 7:2612–2619, 2021.

    Article  Google Scholar 

  30. Lee, K. C. H., S. Tan, J. K. Goh, A. A. L. Hsu, and S. Y. Low. Long-term outcomes of tracheobronchial stenosis due to tuberculosis (TSTB) in symptomatic patients: airway intervention vs. conservative management. J. Thorac. Dis. 12:3640–3650, 2020.

    Article  Google Scholar 

  31. Li, L. H., et al. A synthetic cationic antimicrobial peptide inhibits inflammatory response and the NLRP3 inflammasome by neutralizing LPS and ATP. PLoS ONE.12:e0182057, 2017.

    Article  Google Scholar 

  32. Manica, D., C. Schweiger, P. J. C. Marõstica, G. Kuhl, and P. R. A. Carvalho. Association between length of intubation and subglottic stenosis in children. Laryngoscope. 123:1049–1054, 2013.

    Article  Google Scholar 

  33. Maunsell, R., N. S. Lacerda, L. Prata, and M. Brandão. Pediatric airway reconstruction: results after implementation of an airway team in Brazil. Braz. J. Otorhinolaryngol. 86:157–164, 2020.

    Article  Google Scholar 

  34. Moore, E. M., D. R. Maestas, H. Y. Comeau, and J. H. Elisseeff. The immune system and its contribution to variability in regenerative medicine. Tissue Eng. B. 27:39–47, 2021.

    Article  Google Scholar 

  35. Nguyen, H. C. B., T. N. Chao, N. A. Cohen, and N. Mirza. Persistent inflammation and nitric oxide dysregulation are transcriptomic blueprints of subglottic stenosis. Front. Immunol. 12:5499, 2021.

    Article  Google Scholar 

  36. Panda, S. K., and M. Colonna. Innate lymphoid cells in mucosal immunity. Front. Immunol. 10:861, 2019.

    Article  Google Scholar 

  37. Pasick, L. J., M. M. Anis, and D. E. Rosow. An updated review of subglottic stenosis: etiology, evaluation, and management. Curr. Pulmonol. Rep. 11:29, 2022.

    Article  Google Scholar 

  38. Pathak, V., R. W. Shepherd, and S. Shojaee. Tracheobronchial tuberculosis. J. Thorac. Dis. 8:3818, 2016.

    Article  Google Scholar 

  39. Rathinam, V. A. K., S. K. Vanaja, and K. A. Fitzgerald. Regulation of inflammasome signaling. Nat. Immunol. 13:333–342, 2012.

    Article  Google Scholar 

  40. Simonson, A. W., et al. Pathogen-specific antimicrobials engineered de novo through membrane-protein biomimicry. Nat. Biomed. Eng. 5:1–14, 2021.

    Article  Google Scholar 

  41. Simonson, A. W., M. R. Aronson, S. H. Medina, and S. H. Medina. Supramolecular peptide assemblies as antimicrobial scaffolds. Molecules. 25:2751, 2020.

    Article  Google Scholar 

  42. Slaninová, J., et al. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells. Peptides. 33:18–26, 2012.

    Article  Google Scholar 

  43. Treviño-Villarreal, J. H., J. S. Reynolds, P. K. Langston, A. Thompson, J. R. Mitchell, and R. A. Franco. Down-regulation of a profibrotic transforming growth factor-β1/cellular communication network factor 2/matrix metalloprotease 9 axis by triamcinolone improves idiopathic subglottic stenosis. Am. J. Pathol. 191:1412–1430, 2021.

    Article  Google Scholar 

  44. Wertz, A., M. Ryan, I. Jacobs, and J. Piccione. Impact of pre-operative multidisciplinary evaluation on laryngotracheal reconstruction outcomes. Laryngoscope. 131:E2356–E2362, 2021.

    Article  Google Scholar 

  45. Willdigg, J. R., and J. D. Helmann. Mini Review: bacterial membrane composition and its modulation in response to stress. Front. Mol. Biosci. 8:338, 2021.

    Article  Google Scholar 

  46. Zhang, C., et al. RNA Sequencing of idiopathic subglottic stenosis tissues uncovers putative profibrotic mechanisms and identifies a prognostic biomarker. Am. J. Pathol. 192:1506–1530, 2022.

    Article  Google Scholar 

  47. Zur, K. B., D. L. Mandell, R. E. Gordon, I. Holzman, and M. A. Rothschild. Electron microscopic analysis of biofilm on endotracheal tubes removed from intubated neonates. Otolaryngol. Head Neck Surg. 130:407–414, 2004.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Microbial Culture and Metabolomics Core of the PennCHOP Microbiome Program (Philadelphia, PA) for bacterial cultures and Dr. Susan Thibeault for kindly providing the vocal folds fibroblasts used in this study. We also thank Kyra Smith for her help with the graphical illustrations. This work was carried out in part at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under Grant NNCI-2025608. This work was supported in part by the Children’s Hospital of Philadelphia Research Institute (RG), the Frontier Program in Airway Disorders of the Children’s Hospital of Philadelphia (RG), Foerderer Grant (RG), and the National Science Foundation Graduate Research Fellowship No. DGE 1845298 (MRA, RF).

Author information

Authors and Affiliations

Authors

Contributions

MRA, RCB, INJ, NM, and RG conceived the research plan. MRA, AM, RMF, DDG, HCBN, and KSM carried out experiments. MRA, RMF, and RG prepared figures and wrote the manuscript. All authors reviewed, edited, and approved the final manuscript.

Corresponding author

Correspondence to Riccardo Gottardi.

Ethics declarations

Conflict of interest

MA and RG are inventors on a pending patent related to the technology described in this manuscript. AM, RMF, DDG, RCB, HCBN, KSM, INJ, and NM declare no conflicts of interest.

Research Involving Human and Animal Rights Statement

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. No human studies were carried out by the authors for this article.

Additional information

Associate Editor Owen McCarty oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7095 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronson, M.R., Mehta, A., Friedman, R.M. et al. Amelioration of Subglottic Stenosis by Antimicrobial Peptide Eluting Endotracheal Tubes. Cel. Mol. Bioeng. 16, 369–381 (2023). https://doi.org/10.1007/s12195-023-00769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-023-00769-9

Keywords

Navigation