Skip to main content
Log in

Causative Role of Anoxic Environment in Bacterial Regulation of Human Intestinal Function

  • S.I. : 2022 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Life on Earth depends on oxygen; human tissues require oxygen signaling, whereas many microorganisms, including bacteria, thrive in anoxic environments. Despite these differences, human tissues and bacteria coexist in close proximity to each other such as in the intestine. How oxygen governs intestinal-bacterial interactions remains poorly understood.

Methods

To address to this gap, we created a dual-oxygen environment in a microfluidic device to study the role of oxygen in regulating the regulation of intestinal enzymes and proteins by gut bacteria. Two-layer microfluidic devices were designed using a fluid transport model and fabricated using soft lithography. An oxygen-sensitive material was integrated to determine the oxygen levels. The intestinal cells were cultured in the upper chamber of the device. The cells were differentiated, upon which bacterial strains, a facultative anaerobe, Escherichia coli Nissle 1917, and an obligate anaerobe, Bifidobacterium Adolescentis, were cultured with the intestinal cells.

Results

The microfluidic device successfully established a dual-oxygen environment. Of particular importance in our findings was that both strains significantly upregulated mucin proteins and modulated several intestinal transporters and transcription factors but only under the anoxic–oxic oxygen gradient, thus providing evidence of the role of oxygen on bacterial-epithelial signaling.

Conclusions

Our work that integrates cell and molecular biology with bioengineering presents a novel strategy to engineer an accessible experimental system to provide tailored oxygenated environments. The work could provide new avenues to study intestine-microbiome signaling and intestinal tissue engineering, as well as a novel perspective on the indirect effects of gut bacteria on tissues including tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The data and material are listed in supplementary documents.

Code Availability

Not applicable.

Abbreviations

O2C−:

Culture condition with no control of oxygen

O2C+:

Culture condition with oxygen control

ECN:

E. coli Nissle 1917

Bifido :

Bifidobacterium adolescentis (B. adolescentis)

MOI:

Multiplicity of Infection of bacteria to cells

CYP:

Cytochrome P450

MUC2:

Mucin 2

References

  1. Ambrose, N. S., M. Johnson, D. W. Burdon, and M. R. B. Keighley. Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn’s disease surgery. BJS. 71:623–625, 1984.

    Article  Google Scholar 

  2. Belenguer, A., S. H. Duncan, A. G. Calder, G. Holtrop, P. Louis, G. E. Lobley, and H. J. Flint. Two routes of metabolic cross-feeding between bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 72:3593–3599, 2006.

    Article  Google Scholar 

  3. Belzer, C., and W. M. de Vos. Microbes inside—from diversity to function: the case of Akkermansia. ISME J. 6:1449–1458, 2012.

    Article  Google Scholar 

  4. Brennan, M. D., M. L. Rexius-Hall, L. J. Elgass, and D. T. Eddington. Oxygen control with microfluidics. Lab Chip. 14:4305–4318, 2014.

    Article  Google Scholar 

  5. Corrêa-Oliveira, R., J. L. Fachi, A. Vieira, F. T. Sato, and M. A. R. Vinolo. Regulation of immune cell function by short-chain fatty acids. Clin. Transl. Immunol. 5:e73, 2016.

    Article  Google Scholar 

  6. Frank, D. N., A. L. St Amand, R. A. Feldman, E. C. Boedeker, N. Harpaz, and N. R. Pace. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci.. 104:13780–13785, 2007.

    Article  Google Scholar 

  7. Glen, I. Pharmacokinetic variation. Anaesth. Intensive Care Med. 6:282–285, 2005.

    Article  Google Scholar 

  8. Gorczyca, L., and L. M. Aleksunes. Transcription factor-mediated regulation of the BCRP/ABCG2 efflux transporter: a review across tissues and species. Expert Opin. Drug Metab. Toxicol. 16:239–253, 2020.

    Article  Google Scholar 

  9. Haddish-Berhane, N., A. Farhadi, C. Nyquist, K. Haghighi, and A. Keshavarzian. SIMDOT-AbMe: microphysiologically based simulation tool for quantitative prediction of systemic and local bioavailability of targeted oral delivery formulations. Drug Metab. Dispos. 37:608–618, 2009.

    Article  Google Scholar 

  10. Haiser, H. J., K. L. Seim, E. P. Balskus, and P. J. Turnbaugh. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes. 5:233–238, 2014.

    Article  Google Scholar 

  11. Hentges DJ. Anaerobes: General Characteristics. In: Medical Microbiology, edited by S. Baron Galveston: University of Texas Medical Branch at Galveston. http://www.ncbi.nlm.nih.gov/books/NBK7638/. 1996. Accessed May 27, 2021.

  12. Imlay, J. A. How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv. Microb. Physiol. 46:111–153, 2002.

    Article  Google Scholar 

  13. Jalili-Firoozinezhad, S., F. S. Gazzaniga, E. L. Calamari, D. M. Camacho, C. W. Fadel, A. Bein, B. Swenor, B. Nestor, M. J. Cronce, A. Tovaglieri, O. Levy, K. E. Gregory, D. T. Breault, J. M. S. Cabral, D. L. Kasper, R. Novak, and D. E. Ingber. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3:520–531, 2019.

    Article  Google Scholar 

  14. Johansson, M. E. V., and G. C. Hansson. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16:639–649, 2016.

    Article  Google Scholar 

  15. Kelly, C. J., L. Zheng, E. L. Campbell, B. Saeedi, C. C. Scholz, A. J. Bayless, K. E. Wilson, L. E. Glove, D. J. Kominsky, A. Magnuson, T. L. Weir, S. F. Ehrentraut, C. Pickel, K. A. Kuhn, J. M. Lanis, V. Nguyen, C. T. Taylor, and S. P. Colgan. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 17:662–671, 2015.

    Article  Google Scholar 

  16. Kim, R., P. J. Attayek, Y. Wang, K. L. Furtado, R. Tamayo, C. E. Sims, and N. L. Allbritton. An in vitro intestinal platform with a self-sustaining oxygen gradient to study the human gut/microbiome interface. Biofabrication. 12:015006, 2019.

    Article  Google Scholar 

  17. Krayenbühl, J. C., S. Vozeh, M. Kondo-Oestreicher, and P. Dayer. Drug-drug interactions of new active substances: mibefradil example. Eur. J. Clin. Pharmacol. 55:559–565, 1999.

    Article  Google Scholar 

  18. Li, Y., Q. Wang, X. Yao, and Y. Li. Induction of CYP3A4 and MDR1 gene expression by baicalin, baicalein, chlorogenic acid, and ginsenoside Rf through constitutive androstane receptor- and pregnane X receptor-mediated pathways. Eur. J. Pharmacol. 640:46–54, 2010.

    Article  Google Scholar 

  19. Lin, J. H. Pharmacokinetic and pharmacodynamic variability: a daunting challenge in drug therapy. Curr. Drug Metab. 8:109–136, 2007.

    Article  Google Scholar 

  20. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408, 2001.

    Article  Google Scholar 

  21. Lukovac, S., C. Belzer, L. Pellis, B. J. Keijser, W. M. de Vos, R. C. Montijn, and G. Roeselers. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio. 5:e01438-14, 2014. https://doi.org/10.1128/mBio.01438-14.

    Article  Google Scholar 

  22. Marrero, D., F. Pujol-Vila, D. Vera, G. Gabriel, X. Illa, A. Elizalde-Torrent, M. Alvarez, and R. Villa. Gut-on-a-chip: mimicking and monitoring the human intestine. Biosens. Bioelectron. 181:113156, 2021.

    Article  Google Scholar 

  23. Mathan, V. I., J. Wiederman, J. F. Dobkin, and J. Lindenbaum. Geographic differences in digoxin inactivation, a metabolic activity of the human anaerobic gut flora. Gut. 30:971–977, 1989.

    Article  Google Scholar 

  24. Matuskova, Z., E. Anzenbacherova, R. Vecera, H. Tlaskalova-Hogenova, M. Kolar, and P. Anzenbacher. Administration of a probiotic can change drug pharmacokinetics: effect of E. coli Nissle 1917 on Amidarone absorption in rats. PLoS ONE. 9:e8715, 2014.

    Article  Google Scholar 

  25. Ortiz-Prado, E., J. F. Dunn, J. Vasconez, D. Castillo, and G. Viscor. Partial pressure of oxygen in the human body: a general review. Am. J. Blood Res. 9:1–14, 2019.

    Google Scholar 

  26. Ott, S. J., M. Musfeldt, D. F. Wenderoth, J. Hampe, O. Brant, U. R. Fölsch, K. N. Timmis, and S. Schreiber. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut. 53:685–693, 2004.

    Article  Google Scholar 

  27. Paine, M. F., H. L. Hart, S. S. Ludington, R. L. Haining, A. E. Rettie, and D. C. Zeldin. The human intestinal cytochrome P450 “PIE.” Drug Metab. Dispos. Biol. Fate Chem. 34:880–886, 2006.

    Article  Google Scholar 

  28. Paone, P., and P. D. Cani. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020. https://doi.org/10.1136/gutjnl-2020-322260.

    Article  Google Scholar 

  29. Patel, J., K. Landers, H. Li, R. H. Mortimer, and K. Richard. Oxygen concentration regulates expression and uptake of transthyretin, a thyroxine binding protein, in JEG-3 choriocarcinoma cells. Placenta. 32:128–133, 2011.

    Article  Google Scholar 

  30. Pikuleva, I. A., and M. R. Waterman. Cytochromes P450: roles in diseases. J. Biol. Chem. 288:17091–17098, 2013.

    Article  Google Scholar 

  31. Saha, J. R., V. P. Butler Jr., H. C. Neu, and J. Lindenbaum. Digoxin-inactivating bacteria: identification in human gut flora. Science. 220:325–327, 1983.

    Article  Google Scholar 

  32. Shah, Y. M. The role of hypoxia in intestinal inflammation. Mol. Cell Pediatr. 3:1, 2016.

    Article  Google Scholar 

  33. Shah, P., T. Guo, D. D. Moore, and R. Ghose. Role of constitutive androstane receptor in Toll-like receptor-mediated regulation of gene expression of hepatic drug-metabolizing enzymes and transporters. Drug Metab. Dispos. Biol. Fate Chem. 42:172–181, 2014.

    Article  Google Scholar 

  34. Shin, W., and H. J. Kim. Intestinal barrier dysfunction orchestrates the onset of inflammatory host–microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl. Acad. Sci. 115:E10539–E10547, 2018.

    Article  Google Scholar 

  35. Shugarts, S., and L. Z. Benet. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm. Res. 26:2039–2054, 2009.

    Article  Google Scholar 

  36. Sonnenborn, U. Escherichia coli strain Nissle 1917-from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol. Lett. 363:212, 2016.

    Article  Google Scholar 

  37. Stillhart, C., K. Vučićević, P. Augustijns, A. W. Basit, H. Batchelor, T. R. Flanagan, I. Gesquiere, R. Greupink, D. Keszthelyi, M. Koskinen, C. M. Madla, C. Matthys, G. Miljuš, M. G. Mooij, N. Parrott, A.-L. Ungell, S. N. de Wildt, M. Orlu, S. Klein, and A. Müllertz. Impact of gastrointestinal physiology on drug absorption in special populations––an UNGAP review. Eur. J. Pharm. Sci. 147:105280, 2020.

    Article  Google Scholar 

  38. Unden, G., S. Becker, J. Bongaerts, J. Schirawski, and S. Six. Oxygen regulated gene expression in facultatively anaerobic bacteria. Ant. Van Leeuwen. 66:3–22, 1994.

    Article  Google Scholar 

  39. van Kessel, S. P., A. K. Frye, A. O. El-Gendy, M. Castejon, A. Keshavarzian, G. van Dijk, and S. E. Aidy. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun. 10:310, 2019.

    Article  Google Scholar 

  40. Wang, C., T. Dang, J. Baste, A. A. Joshi, and A. Bhushan. A novel standalone microfluidic device for local control of oxygen tension for intestinal-bacteria interactions. FASEB J. 35:e21291, 2021.

    Google Scholar 

  41. Waring, M. J., J. Arrowsmith, A. R. Leach, P. D. Leeson, S. Mandrell, R. M. Owen, G. Pairaudeau, W. D. Pennie, S. D. Pickett, J. Wang, O. Wallace, and A. Weir. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14:475–486, 2015.

    Article  Google Scholar 

  42. Xiang, Y., H. Wen, Y. Yu, M. Li, X. Fu, and S. Huang. Gut-on-chip: recreating human intestine in vitro. J. Tissue Eng. 11:2041731420965318, 2020.

    Article  Google Scholar 

  43. Xie, F., X. Ding, and Q.-Y. Zhang. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm. Sin. B. 6:374–383, 2016.

    Article  Google Scholar 

  44. Zanger, U. M., and M. Schwab. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138:103–141, 2013.

    Article  Google Scholar 

  45. Zheng, L., C. J. Kelly, and S. P. Colgan. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme: cellular responses to hypoxia. Am. J. Physiol. Cell Physiol. 309:C350–C360, 2015.

    Article  Google Scholar 

  46. Zimmermann, M., M. Zimmermann-Kogadeeva, R. Wegmann, and A. L. Goodman. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 570:462–467, 2019.

    Article  Google Scholar 

Download references

Funding

This work was partly funded by the Nayar Prize II, Alternatives Research and Development Foundation (ARDF) and student scholarships from the Armor College of Engineering.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: CW, AB. Conducted experiments: CW, AC, JB, DM, AAJ, AN. Contributed new reagents or analytic tools: CW, AB. Performed data analysis: CW, JB, AAJ, AB. Performed data visualization: CW, JB, AC, DM. Wrote or contributed to the writing of the manuscript: CW, AC, JB, DM, AB.

Corresponding author

Correspondence to Abhinav Bhushan.

Ethics declarations

Conflict of interest

The authors Chengyao Wang, Andrea Cancino, Jasmine Baste, Daniel Marten, Advait Anil Joshi, Amreen Nasreen, Abhinav Bhushan have declared that no conflict of interest exists.

Human Studies

No human studies were carried out by the authors for this article.

Animal Studies

No animal studies were carried out by the authors for this article.

Additional information

Associate Editor Cheng Dong oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 572 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Cancino, A., Baste, J. et al. Causative Role of Anoxic Environment in Bacterial Regulation of Human Intestinal Function. Cel. Mol. Bioeng. 15, 493–504 (2022). https://doi.org/10.1007/s12195-022-00735-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00735-x

Keywords

Navigation