Skip to main content
Log in

High-Density Branched PEGylation for Nanoparticle Drug Delivery

  • 2022 CMBE Young Innovators
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

The surface modification of nanoparticles (NP) with a dense layer of polyethylene glycol (PEG) has been widely used to improve NP circulation time, bioavailability, and diffusion through biological barriers [e.g. extracellular matrix (ECM), mucus]. While linear PEG coatings are commonly used, branched PEG coatings have not been widely explored as a design parameter for NP drug delivery systems.

Methods

NPs were densely coated with either linear 2, 5, 10 kDa linear PEG or with 10 kDa star-shaped, 4-arm branched PEG. NP cellular uptake was evaluated in HEK-293T and A549 cells. NP stability was evaluated in fetal bovine serum over 24 h using dynamic light scattering. Diffusion of NPs within a Matrigel ECM model and sputum (mucus) collected from individuals with cystic fibrosis (CF) lung disease were analyzed through multiple particle tracking.

Results

PEG-coated NPs appeared more stable in serum compared to uncoated NPs, but the reduction in total protein adsorbed was most significant for branched PEG coated NP. All PEGylated NPs had similar cellular uptake in HEK-293T and A549 cells. Interestingly, branched-PEG coated NPs had the largest diffusion coefficient and moved most rapidly through Matrigel. However in CF mucus, linear 2 and 5 kDa PEG coated NPs had the largest fraction of rapidly diffusing particles while branched PEG coated NPs had less hindered mobility compared to linear 10 kDa PEG coated NPs.

Conclusion

Branched PEGylation may have the potential to increase NP efficiency in reaching target cells based on an apparent increase in diffusion through an ECM model while maintaining NP stability and uptake in target cells comparable to their linear PEG counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Arends, F., R. Baumgärtel, and O. Lieleg. Ion-specific effects modulate the diffusive mobility of colloids in an extracellular matrix gel. Langmuir. 29(51):15965–15973, 2013. https://doi.org/10.1021/LA404016Y/SUPPL_FILE/LA404016Y_SI_001.PDF.

    Article  Google Scholar 

  2. Blanco, E., H. Shen, and M. Ferrari. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 33(9):941–951, 2015. https://doi.org/10.1038/nbt.3330.

    Article  Google Scholar 

  3. Chen, J., S. Li, Q. Shen, H. He, and Y. Zhang. Enhanced cellular uptake of folic acid conjugated PLGAPEG nanoparticles loaded with vincristine sulfate in human breast cancer. Drug Dev. Ind. Pharm. 37(11):1339–1346, 2011. https://doi.org/10.3109/03639045.2011.575162.

    Article  Google Scholar 

  4. Dai, Q., N. Bertleff-Zieschang, J. A. Braunger, M. Björnmalm, C. Cortez-Jugo, and F. Caruso. Particle targeting in complex biological media. Adv. Healthc. Mater. 7(1):1700575, 2018. https://doi.org/10.1002/ADHM.201700575.

    Article  Google Scholar 

  5. Daoud, M., and J. P. Cotton. Star shaped polymers: a model for the conformation and its concentration dependence. J. Phys. Paris. 43(3):531–538, 1982. https://doi.org/10.1051/jphys:01982004303053100.

    Article  Google Scholar 

  6. Duncan, G. A., J. Jung, A. Joseph, et al. Microstructural alterations of sputum in cystic fibrosis lung disease. JCI Insight. 1(18):88198, 2016. https://doi.org/10.1172/JCI.INSIGHT.88198.

    Article  Google Scholar 

  7. Evensen, L., P. L. Johansen, G. Koster, et al. Zebrafish as a model system for characterization of nanoparticles against cancer. Nanoscale. 8(2):862–877, 2015. https://doi.org/10.1039/C5NR07289A.

    Article  Google Scholar 

  8. Finbloom, J. A., F. Sousa, M. M. Stevens, and T. A. Desai. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv. Drug Deliv. Rev. 167:89–108, 2020. https://doi.org/10.1016/J.ADDR.2020.06.007.

    Article  Google Scholar 

  9. Frantz, C., K. M. Stewart, and V. M. Weaver. The extracellular matrix at a glance. J. Cell Sci. 123(123):4195–4200, 2010. https://doi.org/10.1242/jcs.023820.

    Article  Google Scholar 

  10. Innes, A. L., S. D. Carrington, D. J. Thornton, et al. Ex vivo sputum analysis reveals impairment of protease-dependent mucus degradation by plasma proteins in acute asthma. Am. J. Respir. Crit. Care Med. 180(3):203, 2009. https://doi.org/10.1164/RCCM.200807-1056OC.

    Article  Google Scholar 

  11. James, A. L., P. S. Maxwell, G. Pearce-Pinto, J. G. Elliot, and N. G. Carroll. The relationship of reticular basement membrane thickness to airway wall remodeling in asthma. Am. J. Respir. Crit. Care Med. 166(12 Pt 1):1590–1595, 2002. https://doi.org/10.1164/rccm.2108069.

    Article  Google Scholar 

  12. Ji, T., J. Lang, J. Wang, et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano. 11(9):8668–8678, 2017. https://doi.org/10.1021/ACSNANO.7B01026/SUPPL_FILE/NN7B01026_SI_001.PDF.

    Article  Google Scholar 

  13. Lee, B. J., Y. Cheema, S. Bader, and G. A. Duncan. Shaping nanoparticle diffusion through biological barriers to drug delivery. JCIS Open.4:100025, 2021. https://doi.org/10.1016/J.JCISO.2021.100025.

    Article  Google Scholar 

  14. Lieleg, O., R. M. Baumgärtel, and A. R. Bausch. Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys J. 97(6):1569, 2009. https://doi.org/10.1016/J.BPJ.2009.07.009.

    Article  Google Scholar 

  15. Magno, L. M., D. T. Hinds, P. Duffy, et al. Porous carbon microparticles as vehicles for the intracellular delivery of molecules. Front. Chem. 8:925, 2020. https://doi.org/10.3389/FCHEM.2020.576175/BIBTEX.

    Article  Google Scholar 

  16. Maisel, K., M. Reddy, Q. Xu, et al. Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution in vivo. Nanomedicine. 11(11):1337–1343, 2016. https://doi.org/10.2217/nnm-2016-0047.

    Article  Google Scholar 

  17. Manzanares, D., and V. Ceña. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics. 12(4):371, 2020. https://doi.org/10.3390/PHARMACEUTICS12040371.

    Article  Google Scholar 

  18. Marazioti, A., K. Papadia, M. Kannavou, et al. Cellular vesicles: New insights in engineering methods, interaction with cells and potential for brain targeting. J. Pharmacol. Exp. Ther. 370(3):772–785, 2019. https://doi.org/10.1124/JPET.119.257097/-/DC1.

    Article  Google Scholar 

  19. Mitchell, M. J., M. M. Billingsley, R. M. Haley, M. E. Wechsler, N. A. Peppas, and R. Langer. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20(2):101, 2021. https://doi.org/10.1038/S41573-020-0090-8.

    Article  Google Scholar 

  20. Nance, E. A., G. F. Woodworth, K. A. Sailor, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 4(149):149ra119, 2012. https://doi.org/10.1126/SCITRANSLMED.3003594.

    Article  Google Scholar 

  21. Nel, A. E., L. Mädler, D. Velegol, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7):543–557, 2009. https://doi.org/10.1038/NMAT2442.

    Article  Google Scholar 

  22. Prencipe, G., S. M. Tabakman, K. Welsher, et al. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 131(13):4783–4787, 2009. https://doi.org/10.1021/ja809086q.

    Article  Google Scholar 

  23. Rojnik, M., P. Kocbek, F. Moret, et al. In vitro and in vivo characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy. Nanomedicine. 7(5):663–677, 2012. https://doi.org/10.2217/NNM.11.130/ASSET/IMAGES/LARGE/FIGURE9.JPEG.

    Article  Google Scholar 

  24. Rosenblum, D., N. Joshi, W. Tao, J. M. Karp, and D. Peer. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018. https://doi.org/10.1038/s41467-018-03705-y.

    Article  Google Scholar 

  25. Saadat, M., F. Zahednezhad, P. Zakeri-Milani, H. R. Heidari, J. Shahbazi-Mojarrad, and H. Valizadeh. Drug targeting strategies based on charge dependent uptake of nanoparticles into cancer cells. J. Pharm. Pharm. Sci. 22(1):191–220, 2019.

    Article  Google Scholar 

  26. Schneider, C. S., Q. Xu, N. J. Boylan, et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 2017. https://doi.org/10.1126/sciadv.1601556.

    Article  Google Scholar 

  27. Schuster, B. S., J. S. Suk, G. F. Woodworth, and J. Hanes. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials. 34(13):3439–3446, 2013. https://doi.org/10.1016/j.biomaterials.2013.01.064.

    Article  Google Scholar 

  28. Shi, L., J. Zhang, M. Zhao, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale. 13(24):10748–10764, 2021. https://doi.org/10.1039/D1NR02065J.

    Article  Google Scholar 

  29. Soenen, S. J., B. B. Manshian, A. M. Abdelmonem, et al. The cellular interactions of PEGylated gold nanoparticles: effect of PEGylation on cellular uptake and cytotoxicity. Part. Part. Syst. Charact. 31(7):794–800, 2014. https://doi.org/10.1002/PPSC.201300357.

    Article  Google Scholar 

  30. Song, D., D. Cahn, and G. A. Duncan. Mucin biopolymers and their barrier function at airway surfaces. Langmuir. 2020. https://doi.org/10.1021/acs.langmuir.0c02410.

    Article  Google Scholar 

  31. Stylianopoulos, T., M. Z. Poh, N. Insin, et al. Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J. 99(5):1342–1349, 2010. https://doi.org/10.1016/j.bpj.2010.06.016.

    Article  Google Scholar 

  32. Suk, J. S., Q. Xu, N. Kim, J. Hanes, and L. M. Ensign. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv Rev. 99:28–51, 2016. https://doi.org/10.1016/j.addr.2015.09.012.

    Article  Google Scholar 

  33. Tomasetti, L., R. Liebl, D. S. Wastl, and M. Breunig. Influence of PEGylation on nanoparticle mobility in different models of the extracellular matrix. Eur. J. Pharm. Biopharm. 108:145–155, 2016. https://doi.org/10.1016/j.ejpb.2016.08.007.

    Article  Google Scholar 

  34. Vignola, A. M., J. Kips, and J. Bousquet. Tissue remodeling as a feature of persistent asthma. J. Allergy Clin. Immunol. 105(6):1041–1053, 2000. https://doi.org/10.1067/MAI.2000.107195.

    Article  Google Scholar 

  35. Wang, Y. Y., S. K. Lai, J. S. Suk, A. Pace, R. Cone, and J. Hanes. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew. Chem. Int. Ed. 47(50):9726–9729, 2008. https://doi.org/10.1002/anie.200803526.

    Article  Google Scholar 

  36. Xu, Q., L. M. Ensign, N. J. Boylan, et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 9(9):9217–9227, 2015. https://doi.org/10.1021/acsnano.5b03876.

    Article  Google Scholar 

  37. Yang, Q., S. W. Jones, C. L. Parker, W. C. Zamboni, J. E. Bear, and S. K. Lai. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol. Pharm. 11(4):1250–1258, 2014. https://doi.org/10.1021/mp400703d.

    Article  Google Scholar 

  38. Yang, Q., and S. K. Lai. Engineering well-characterized PEG-coated nanoparticles for elucidating biological barriers to drug delivery. Methods Mol. Biol. 1530:125–137, 2017. https://doi.org/10.1007/978-1-4939-6646-2_8.

    Article  Google Scholar 

  39. Yuan, S., M. Hollinger, M. E. Lachowicz-Scroggins, et al. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Sci. Transl. Med. 7(276):276ra27, 2015. https://doi.org/10.1126/SCITRANSLMED.3010525.

    Article  Google Scholar 

  40. Zámecník, J., L. Vargová, A. Homola, R. Kodet, and E. Syková. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathol. Appl. Neurobiol. 30(4):338–350, 2004. https://doi.org/10.1046/j.0305-1846.2003.00541.x.

    Article  Google Scholar 

  41. Zhang, B., T. Jiang, S. Shen, et al. Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer. Biomaterials. 103:12–21, 2016. https://doi.org/10.1016/J.BIOMATERIALS.2016.06.048.

    Article  Google Scholar 

  42. Zhao, X., J. Si, D. Huang, K. Li, Y. Xin, and M. Sui. Application of star poly(ethylene glycol) derivatives in drug delivery and controlled release. J. Control Release. 323:565–577, 2020. https://doi.org/10.1016/j.jconrel.2020.04.039.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Steven Jay and Dr. Margaret Scull at the University of Maryland for generously providing HEK-293T and A549 cells, respectively. We thank Dr. Natalie West, Dr. Jung Soo Suk, and Dr. Justin Hanes at Johns Hopkins University School of Medicine for providing the CF sputum used in our work through their IRB-approved study. We acknowledge the BioWorkshop core facility in the Fischell Department of Bioengineering at the University of Maryland for use of their dynamic light scattering instrument and microplate reader.

Funding

This work was supported by the American Lung Association Innovation Award, Burroughs Wellcome Fund Career Award at the Scientific Interface, NSF CAREER Award 2047794, and UMD-NCI Partnership for Integrative Cancer Research.

Conflict of interest

Devorah Cahn and Gregg Duncan declare no conflicts of interest.

Human Subjects Research Ethics Statement

Human mucus was collected under an IRB-approved protocol at the Johns Hopkins University of School of Medicine (Study NA_00046768). Spontaneously expectorated sputum samples were collected after receiving written informed consent from all patients included in the study. All patient samples were de-identified and referred to by numerical ID only.

Animal Research Ethics Statement

No animal studies were performed in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg A. Duncan.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cahn, D., Duncan, G.A. High-Density Branched PEGylation for Nanoparticle Drug Delivery. Cel. Mol. Bioeng. 15, 355–366 (2022). https://doi.org/10.1007/s12195-022-00727-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00727-x

Keywords

Navigation