Skip to main content

Advertisement

Log in

OTUB2 Promotes Proliferation and Migration of Hepatocellular Carcinoma Cells by PJA1 Deubiquitylation

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Recent studies have revealed that several deubiquitinating enzymes (DUBs) play important roles in hepatocellular carcinoma (HCC) progression, but the roles of Otubain 2 (OTUB2) in HCC remain obscure.

Methods

In this study, we investigated the expression of OTUB2 in HCC based on clinical samples and a public online database (ENCORI), and its roles and working mechanisms were further explored by in vitro experiments.

Results

It was found that the expression of OTUB2 was significantly up-regulated in HCC tissues, and correlated with poor prognosis of HCC patients. Functionally, the overexpression of OTUB2 could promote malignant proliferation and metastasis of HCC cells, while knockdown of OTUB2 exerted the opposite results. Using two bioinformatics tools, PJA1 was identified as a potential gene regulated by OTUB2. Mechanistically, it was found that OTUB2 promoted the stabilization of PJA1 by deubiquitylation, based on immunoprecipitation (IP) and cycloheximide (CHX) assays. Moreover, the suppressive effects of OTUB2 depletion on the malignant phenotypes of HCC cells could be reversed by overexpressing PJA1.

Conclusion

In conclusion, our study indicated that OTUB2 could promote the malignant proliferation and migration of HCC cells by increasing the stability of PJA1 via deubiquitylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Antao, A. M., A. Tyagi, K. S. Kim, and S. Ramakrishna. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics. Cancers (Basel). 12:1579, 2020.

    Article  Google Scholar 

  2. Chan, D. W., C. Y. Chan, J. W. Yam, Y. P. Ching, and I. O. Ng. Prickle-1 negatively regulates Wnt/beta-catenin pathway by promoting Dishevelled ubiquitination/degradation in liver cancer. Gastroenterology. 131:1218–1227, 2006.

    Article  Google Scholar 

  3. Chen, J., and J. A. Gingold. Dysregulated PJA1-TGF-β signaling in cancer stem cell-associated liver cancers. Oncoscience. 7:88–95, 2020.

    Article  Google Scholar 

  4. Chen, J., A. Mitra, S. Li, S. Song, B. N. Nguyen, J. S. Chen, J. H. Shin, N. R. Gough, P. Lin, V. Obias, A. R. He, Z. Yao, T. M. Malta, H. Noushmehr, P. S. Latham, X. Su, A. Rashid, B. Mishra, R. C. Wu, and L. Mishra. Targeting the E3 ubiquitin ligase PJA1 enhances tumor-suppressing TGFβ signaling. Cancer Res. 80:1819–1832, 2020.

    Article  Google Scholar 

  5. Clague, M. J., C. Heride, and S. Urbé. The demographics of the ubiquitin system. Trends Cell Biol. 25:417–426, 2015.

    Article  Google Scholar 

  6. Cockram, P. E., M. Kist, S. Prakash, S. H. Chen, I. E. Wertz, and D. Vucic. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 28:591–605, 2021.

    Article  Google Scholar 

  7. Consalvi, S., A. Brancaccio, A. Dall’Agnese, P. L. Puri, and D. Palacios. Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38α activation. Nat. Commun. 8:13956, 2017.

    Article  Google Scholar 

  8. Dey, A., D. Seshasayee, R. Noubade, D. M. French, J. Liu, M. S. Chaurushiya, D. S. Kirkpatrick, V. C. Pham, J. R. Lill, C. E. Bakalarski, J. Wu, L. Phu, P. Katavolos, L. M. LaFave, O. Abdel-Wahab, Z. Modrusan, S. Seshagiri, K. Dong, Z. Lin, M. Balazs, R. Suriben, K. Newton, S. Hymowitz, G. Garcia-Manero, F. Martin, R. L. Levine, and V. M. Dixit. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science. 337:1541–1546, 2012.

    Article  Google Scholar 

  9. Fraile, J. M., V. Quesada, D. Rodríguez, J. M. Freije, and C. López-Otín. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene. 31:2373–2388, 2012.

    Article  Google Scholar 

  10. Franke, F. C., J. Müller, M. Abal, E. D. Medina, U. Nitsche, H. Weidmann, S. Chardonnet, E. Ninio, and K. P. Janssen. The tumor suppressor SASH1 interacts with the signal adaptor CRKL to inhibit epithelial–mesenchymal transition and metastasis in colorectal cancer. Cell Mol. Gastroenterol. Hepatol. 7:33–53, 2019.

    Article  Google Scholar 

  11. Gallo, L. H., J. Ko, and D. J. Donoghue. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle. 16:634–648, 2017.

    Article  Google Scholar 

  12. Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature. 426:895–899, 2003.

    Article  Google Scholar 

  13. Gu, Z. L., J. Huang, and L. L. Zhen. Knockdown of otubain 2 inhibits liver cancer cell growth by suppressing NF-κB signaling. Kaohsiung J. Med. Sci. 36:399–404, 2020.

    Article  Google Scholar 

  14. Haq, S., S. Das, D. H. Kim, A. P. Chandrasekaran, S. H. Hong, K. S. Kim, and S. Ramakrishna. The stability and oncogenic function of LIN28A are regulated by USP28. Biochim Biophys. Acta Mol. Basis Dis. 1865:599–610, 2019.

    Article  Google Scholar 

  15. Harrigan, J. A., X. Jacq, N. M. Martin, and S. P. Jackson. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17:57–78, 2018.

    Article  Google Scholar 

  16. Hussain, S., Y. Zhang, and P. J. Galardy. DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle. 8:1688–1697, 2009.

    Article  Google Scholar 

  17. Johnson, R., and G. Halder. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat. Rev. Drug Discov. 13:63–79, 2014.

    Article  Google Scholar 

  18. Kuo, K. L., S. H. Liu, W. C. Lin, P. M. Chow, Y. W. Chang, S. P. Yang, C. S. Shi, C. H. Hsu, S. M. Liao, H. C. Chang, and K. H. Huang. The deubiquitinating enzyme inhibitor PR-619 enhances the cytotoxicity of cisplatin via the suppression of anti-apoptotic Bcl-2 protein: in vitro and in vivo study. Cells. 8:1268, 2019.

    Article  Google Scholar 

  19. Li, Z., Z. Cheng, C. Raghothama, Z. Cui, K. Liu, X. Li, C. Jiang, W. Jiang, M. Tan, X. Ni, A. Pandey, J. O. Liu, and Y. Dang. USP9X controls translation efficiency via deubiquitination of eukaryotic translation initiation factor 4A1. Nucleic Acids Res. 46:823–839, 2018.

    Article  Google Scholar 

  20. Li, J., D. Cheng, M. Zhu, H. Yu, Z. Pan, L. Liu, Q. Geng, H. Pan, M. Yan, and M. Yao. OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer. Theranostics. 9:179–195, 2019.

    Article  Google Scholar 

  21. Li, J. H., S. Liu, H. Zhou, L. H. Qu, and J. H. Yang. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42:92–97, 2014.

    Article  Google Scholar 

  22. Linares, J. F., A. Duran, T. Yajima, M. Pasparakis, J. Moscat, and M. T. Diaz-Meco. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol. Cell. 51:283–296, 2013.

    Article  Google Scholar 

  23. Luo, Z., X. Ye, Y. Cheng, F. Li, F. Shou, and G. Wang. E3 ubiquitin ligase PJA1 regulates lung adenocarcinoma apoptosis and invasion through promoting FOXR2 degradation. Biochem. Biophys. Res. Commun. 556:106–113, 2021.

    Article  Google Scholar 

  24. Nanao, M. H., S. O. Tcherniuk, J. Chroboczek, O. Dideberg, A. Dessen, and M. Y. Balakirev. Crystal structure of human otubain 2. EMBO Rep. 5:783–788, 2004.

    Article  Google Scholar 

  25. Ohshiro, K., J. Chen, J. Srivastav, L. Mishra, and B. Mishra. Alterations in TGF-β signaling leads to high HMGA2 levels potentially through modulation of PJA1/SMAD3 in HCC cells. Genes Cancer. 11:43–52, 2020.

    Article  Google Scholar 

  26. Padua, D., and J. Massagué. Roles of TGFbeta in metastasis. Cell Res. 19:89–102, 2009.

    Article  Google Scholar 

  27. Pan, B., Y. Yang, J. Li, Y. Wang, C. Fang, F. X. Yu, and Y. Xu. USP47-mediated deubiquitination and stabilization of YAP contributes to the progression of colorectal cancer. Protein Cell. 11:138–143, 2020.

    Article  Google Scholar 

  28. Pinto-Fernandez, A., and B. M. Kessler. DUBbing cancer: deubiquitylating enzymes involved in epigenetics, DNA damage and the cell cycle as therapeutic targets. Front. Genet. 7:133, 2016.

    Article  Google Scholar 

  29. Rape, M. Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol. 19:59–70, 2018.

    Article  Google Scholar 

  30. Rhodes, D. R., J. Yu, K. Shanker, N. Deshpande, R. Varambally, D. Ghosh, T. Barrette, A. Pandey, and A. M. Chinnaiyan. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6, 2004.

    Article  Google Scholar 

  31. Sasaki, A., Y. Masuda, K. Iwai, K. Ikeda, and K. Watanabe. A RING finger protein Praja1 regulates Dlx5-dependent transcription through its ubiquitin ligase activity for the Dlx/Msx-interacting MAGE/Necdin family protein, Dlxin-1. J. Biol. Chem. 277:22541–22546, 2002.

    Article  Google Scholar 

  32. Siegel, R. L., K. D. Miller, H. E. Fuchs, and A. Jemal. Cancer statistics, 2021. CA Cancer J. Clin. 71:7–33, 2021.

    Article  Google Scholar 

  33. Sivakumar, D., V. Kumar, M. Naumann, and M. Stein. Activation and selectivity of OTUB-1 and OTUB-2 deubiquitinylases. J. Biol. Chem. 295:6972–6982, 2020.

    Article  Google Scholar 

  34. Szklarczyk, D., A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, and C. V. Mering. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47:D607-d613, 2019.

    Article  Google Scholar 

  35. Tang, Z., C. Li, B. Kang, G. Gao, C. Li, and Z. Zhang. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98-w102, 2017.

    Article  Google Scholar 

  36. Villanueva, A. Hepatocellular carcinoma. N. Engl. J. Med. 380:1450–1462, 2019.

    Article  Google Scholar 

  37. Warde-Farley, D., S. L. Donaldson, O. Comes, K. Zuberi, R. Badrawi, P. Chao, M. Franz, C. Grouios, F. Kazi, C. T. Lopes, A. Maitland, S. Mostafavi, J. Montojo, Q. Shao, G. Wright, G. D. Bader, and Q. Morris. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38:W214-220, 2010.

    Article  Google Scholar 

  38. Zhang, Z., J. Du, S. Wang, L. Shao, K. Jin, F. Li, B. Wei, W. Ding, P. Fu, H. van Dam, A. Wang, J. Jin, C. Ding, B. Yang, M. Zheng, X. H. Feng, K. L. Guan, and L. Zhang. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol. Cell. 73:7-21.e27, 2019.

    Article  Google Scholar 

Download references

Acknowledgments

None.

Funding

No funding was received.

Conflict of interest

Gang Hu, Jianwu Yang, Hongwen Zhang, Zhen Huang and Heming Yang declare that they have no conflicts of interest.

Ethical Approval

The procedure of this research was reviewed and approved by Strategic Support Force Characteristic Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heming Yang.

Additional information

Associate Editor Partha Roy oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Yang, J., Zhang, H. et al. OTUB2 Promotes Proliferation and Migration of Hepatocellular Carcinoma Cells by PJA1 Deubiquitylation. Cel. Mol. Bioeng. 15, 281–292 (2022). https://doi.org/10.1007/s12195-022-00720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-022-00720-4

Keywords

Navigation