Skip to main content

Effects of Pregnancy-Specific Glycoproteins on Trophoblast Motility in Three-Dimensional Gelatin Hydrogels

Abstract

Introduction

Trophoblast invasion is a complex biological process necessary for establishment of pregnancy; however, much remains unknown regarding what signaling factors coordinate the extent of invasion. Pregnancy-specific glycoproteins (PSGs) are some of the most abundant circulating trophoblastic proteins in maternal blood during human pregnancy, with maternal serum concentrations rising to as high as 200–400 μg/mL at term.

Methods

Here, we employ three-dimensional (3D) trophoblast motility assays consisting of trophoblast spheroids encapsulated in 3D gelatin hydrogels to quantify trophoblast outgrowth area, viability, and cytotoxicity in the presence of PSG1 and PSG9 as well as epidermal growth factor and Nodal.

Results

We show PSG9 reduces trophoblast motility whereas PSG1 increases motility. Further, we assess bulk nascent protein production by encapsulated spheroids to highlight the potential of this approach to assess trophoblast response (motility, remodeling) to soluble factors and extracellular matrix cues.

Conclusions

Such models provide an important platform to develop a deeper understanding of early pregnancy.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Aisenbrey, E. A., and W. L. Murphy. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 5:539–551, 2020.

    Google Scholar 

  2. Ballesteros, A., M. M. Mentink-Kane, J. Warren, G. G. Kaplan, and G. S. Dveksler. Induction and activation of latent transforming growth factor-beta1 are carried out by two distinct domains of pregnancy-specific glycoprotein 1 (PSG1). J. Biol. Chem. 290:4422–4431, 2015.

    Google Scholar 

  3. Blankley, R. T., C. Fisher, M. Westwood, R. North, P. N. Baker, M. J. Walker, A. Williamson, A. D. Whetton, W. Lin, L. McCowan, C. T. Roberts, G. J. Cooper, R. D. Unwin, and J. E. Myers. A label-free SRM workflow identifies a subset of pregnancy specific glycoproteins as potential predictive markers of early-onset pre-eclampsia. Mol. Cell Proteom. 12:3148–3159, 2013.

    Google Scholar 

  4. Blois, S. M., G. Sulkowski, I. Tirado-Gonzalez, J. Warren, N. Freitag, B. F. Klapp, D. Rifkin, I. Fuss, W. Strober, and G. S. Dveksler. Pregnancy-specific glycoprotein 1 (PSG1) activates TGF-beta and prevents dextran sodium sulfate (DSS)-induced colitis in mice. Mucosal. Immunol. 7:348–358, 2014.

    Google Scholar 

  5. Bopp, S. K., and T. Lettieri. Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol. 8:8, 2008.

    Google Scholar 

  6. Buck, V. U., B. Gellersen, R. E. Leube, and I. Classen-Linke. Interaction of human trophoblast cells with gland-like endometrial spheroids: a model system for trophoblast invasion. Hum. Reprod. 30:906–916, 2015.

    Google Scholar 

  7. Camolotto, S., A. Racca, V. Rena, R. Nores, L. C. Patrito, S. Genti-Raimondi, and G. M. Panzetta-Dutari. Expression and transcriptional regulation of individual pregnancy-specific glycoprotein genes in differentiating trophoblast cells. Placenta. 31:312–319, 2010.

    Google Scholar 

  8. Cha, J., X. Sun, and S. K. Dey. Mechanisms of implantation: strategies for successful pregnancy. Nat. Med. 18:1754–1767, 2012.

    Google Scholar 

  9. Chang, T. A., G. I. Bondarenko, B. Gerami-Naini, J. G. Drenzek, M. Durning, M. A. Garthwaite, J. K. Schmidt, and T. G. Golos. Trophoblast differentiation, invasion and hormone secretion in a three-dimensional in vitro implantation model with rhesus monkey embryos. Reprod. Biol. Endocrinol. 16:24, 2018.

    Google Scholar 

  10. Chen, J.-W., A. Blazek, J. Lumibao, H. R. Gaskins, and B. A. C. Harley. Hypoxia activates enhanced invasive potential and endogenous hyaluronic acid production by glioblastoma cells. Biomater. Sci. 6:854–862, 2018.

    Google Scholar 

  11. Chen, J. E., S. Pedron, P. Shyu, Y. Hu, J. N. Sarkaria, and B. A. C. Harley. Influence of hyaluronic acid transitions in tumor microenvironment on glioblastoma malignancy and invasive behavior. Front. Mater. 2018. https://doi.org/10.3389/fmats.2018.00039.

    Article  Google Scholar 

  12. Cohen, M., and P. Bischof. Factors regulating trophoblast invasion. Gynecol. Obstet. Invest. 64:126–130, 2007.

    Google Scholar 

  13. Cook, C. D., A. S. Hill, M. Guo, L. Stockdale, J. P. Papps, K. B. Isaacson, D. A. Lauffenburger, and L. G. Griffith. Local remodeling of synthetic extracellular matrix microenvironments by co-cultured endometrial epithelial and stromal cells enables long-term dynamic physiological function. Integr. Biol. (Camb). 9:271–289, 2017.

    Google Scholar 

  14. Dieterich, D. C., J. J. Lee, A. J. Link, J. Graumann, D. A. Tirrell, and E. M. Schuman. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2:532–540, 2007.

    Google Scholar 

  15. Gilchrist, A. E., S. Lee, Y. Hu, and B. A. C. Harley. Soluble signals and remodeling in a synthetic gelatin-based hematopoietic stem cell niche. Adv. Healthcare Mater. 8:e1900751, 2019.

    Google Scholar 

  16. Hughes, C. S., L. M. Postovit, and G. A. Lajoie. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics. 10:1886–1890, 2010.

    Google Scholar 

  17. Jones, K., A. Ballesteros, M. Mentink-Kane, J. Warren, S. Rattila, H. Malech, E. Kang, and G. Dveksler. PSG9 Stimulates Increase in FoxP3+ Regulatory T-Cells through the TGF-beta1 Pathway. PLoS ONE. 11:e0158050, 2016.

    Google Scholar 

  18. Knofler, M. Critical growth factors and signalling pathways controlling human trophoblast invasion. Int. J. Dev. Biol. 54:269–280, 2010.

    Google Scholar 

  19. Kuo, C.-Y., A. Eranki, J. K. Placone, K. R. Rhodes, H. Aranda-Espinoza, R. Fernandes, J. P. Fisher, and P. C. W. Kim. Development of a 3D printed, bioengineered placenta model to evaluate the role of trophoblast migration in preeclampsia. ACS Biomater. Sci. Eng. 2:1817–1826, 2016.

    Google Scholar 

  20. Kuo, C. Y., T. Guo, J. Cabrera-Luque, N. Arumugasaamy, L. Bracaglia, A. Garcia-Vivas, M. Santoro, H. Baker, J. Fisher, and P. Kim. Placental basement membrane proteins are required for effective cytotrophoblast invasion in a three-dimensional bioprinted placenta model. J. Biomed. Mater. Res. A. 106:1476–1487, 2018.

    Google Scholar 

  21. Kuo, C. Y., M. Shevchuk, J. Opfermann, T. Guo, M. Santoro, J. P. Fisher, and P. C. Kim. Trophoblast-endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnol. Bioeng. 116:181–192, 2019.

    Google Scholar 

  22. Lala, P. K., and P. Nandi. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: the role of decorin. Cell Adh. Migr. 10:111–125, 2016.

    Google Scholar 

  23. Law, J., G. Zhang, M. Dragan, L. M. Postovit, and M. Bhattacharya. Nodal signals via beta-arrestins and RalGTPases to regulate trophoblast invasion. Cell Signal. 26:1935–1942, 2014.

    Google Scholar 

  24. Loebel, C., M. Y. Kwon, C. Wang, L. Han, R. L. Mauck, and J. A. Burdick. Metabolic labeling to probe the spatiotemporal accumulation of matrix at the chondrocyte-hydrogel interface. Adv. Funct. Mater. 2020. https://doi.org/10.1002/adfm.201909802.

    Article  Google Scholar 

  25. Loebel, C., R. L. Mauck, and J. A. Burdick. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18:883–891, 2019.

    Google Scholar 

  26. Loessner, D., C. Meinert, E. Kaemmerer, L. C. Martine, K. Yue, P. A. Levett, T. J. Klein, F. P. Melchels, A. Khademhosseini, and D. W. Hutmacher. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat. Protoc. 11:727–746, 2016.

    Google Scholar 

  27. Mahadik, B. P., N. A. Bharadwaj, R. H. Ewoldt, and B. A. Harley. Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials. 125:54–64, 2017.

    Google Scholar 

  28. Mahadik, B. P., S. Pedron Haba, L. J. Skertich, and B. A. Harley. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials. 67:297–307, 2015.

    Google Scholar 

  29. Moore, T., and G. S. Dveksler. Pregnancy-specific glycoproteins: complex gene families regulating maternal-fetal interactions. Int. J. Dev. Biol. 58:273–280, 2014.

    Google Scholar 

  30. Nadeem, L., S. Munir, G. Fu, C. Dunk, D. Baczyk, I. Caniggia, S. Lye, and C. Peng. Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: implication in the pathogenesis of preeclampsia. Am. J. Pathol. 178:1177–1189, 2011.

    Google Scholar 

  31. Norwitz, E. R., D. J. Schust, and S. J. Fisher. Implantation and the survival of early pregnancy. N. Engl. J. Med. 345:1400–1408, 2001.

    Google Scholar 

  32. Pedron, S., and B. A. Harley. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J. Biomed. Mater. Res. A. 101:3404–3415, 2013.

    Google Scholar 

  33. Pedron, S., A. M. Pritchard, G. A. Vincil, B. Andrade, S. C. Zimmerman, and B. A. Harley. Patterning three-dimensional hydrogel microenvironments using hyperbranched polyglycerols for independent control of mesh size and stiffness. Biomacromolecules. 18:1393–1400, 2017.

    Google Scholar 

  34. Pedron, S., G. L. Wolter, J.-W.E. Chen, S. E. Laken, J. N. Sarkaria, and B. A. C. Harley. Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens. Biomaterials. 219:119371, 2019.

    Google Scholar 

  35. Quail, D. F., G. M. Siegers, M. Jewer, and L. M. Postovit. Nodal signalling in embryogenesis and tumourigenesis. Int. J. Biochem. Cell Biol. 45:885–898, 2013.

    Google Scholar 

  36. Rattila, S., C. E. E. Dunk, M. Im, O. Grichenko, Y. Zhou, M. Yanez-Mo, S. M. Blois, K. M. Yamada, O. Erez, N. Gomez-Lopez, S. J. Lye, B. Hinz, R. Romero, M. Cohen, and G. Dveksler. Interaction of pregnancy-specific glycoprotein 1 with integrin alpha5beta1 is a modulator of extravillous trophoblast functions. Cells. 8:1369, 2019.

    Google Scholar 

  37. Schuurman, W., P. A. Levett, M. W. Pot, P. R. van Weeren, W. J. Dhert, D. W. Hutmacher, F. P. Melchels, T. J. Klein, and J. Malda. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol. Biosci. 13:551–561, 2013.

    Google Scholar 

  38. Shanley, D. K., P. A. Kiely, K. Golla, S. Allen, K. Martin, R. T. O’Riordan, M. Ball, J. D. Aplin, B. B. Singer, N. Caplice, N. Moran, and T. Moore. Pregnancy-specific glycoproteins bind integrin alphaIIbbeta3 and inhibit the platelet-fibrinogen interaction. PLoS ONE. 8:e57491, 2013.

    Google Scholar 

  39. Shapiro, B. S., S. T. Daneshmand, F. C. Garner, M. Aguirre, and S. Thomas. Large blastocyst diameter, early blastulation, and low preovulatory serum progesterone are dominant predictors of clinical pregnancy in fresh autologous cycles. Fertil Steril. 90:302–309, 2008.

    Google Scholar 

  40. Shirahama, H., B. H. Lee, L. P. Tan, and N. J. Cho. Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci. Rep. 6:31036, 2016.

    Google Scholar 

  41. Sorensen, S. Pregnancy-"specific" beta 1-glycoprotein (SP1): purification, characterization, quantification and clinical application in malignancies (a review). Tumor Biol. 5:275–302, 1984.

    Google Scholar 

  42. Staun-Ram, E., S. Goldman, D. Gabarin, and E. Shalev. Expression and importance of matrix metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reprod. Biol. Endocrinol. 2:59, 2004.

    Google Scholar 

  43. Su, R. W., and A. T. Fazleabas. Implantation and establishment of pregnancy in human and nonhuman primates. Adv. Anat. Embryol. Cell Biol. 216:189–213, 2015.

    Google Scholar 

  44. Sulkowski, G. N., J. Warren, C. T. Ha, and G. S. Dveksler. Characterization of receptors for murine pregnancy specific glycoproteins 17 and 23. Placenta. 32:603–610, 2011.

    Google Scholar 

  45. Valdez, J., C. D. Cook, C. C. Ahrens, A. J. Wang, A. Brown, M. Kumar, L. Stockdale, D. Rothenberg, K. Renggli, E. Gordon, D. Lauffenburger, F. White, and L. Griffith. On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials. 130:90–103, 2017.

    Google Scholar 

  46. Vukicevic, S., H. Kleinman, F. Luyten, A. Roberts, N. Roche, and A. Reddi. Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202:1–8, 1992.

    Google Scholar 

  47. Wang, H., S. Bocca, S. Anderson, L. Yu, B. S. Rhavi, J. Horcajadas, and S. Oehninger. Sex steroids regulate epithelial-stromal cell cross talk and trophoblast attachment invasion in a three-dimensional human endometrial culture system. Tissue Eng. Part C Methods. 19:676–687, 2013.

    Google Scholar 

  48. Wang, H., F. Pilla, S. Anderson, S. Martinez-Escribano, I. Herrer, J. M. Moreno-Moya, S. Musti, S. Bocca, S. Oehninger, and J. A. Horcajadas. A novel model of human implantation: 3D endometrium-like culture system to study attachment of human trophoblast (Jar) cell spheroids. Mol. Hum. Reprod. 18:33–43, 2012.

    Google Scholar 

  49. Warren, J., M. Im, A. Ballesteros, C. Ha, T. Moore, F. Lambert, S. Lucas, B. Hinz, and G. Dveksler. Activation of latent transforming growth factor-beta1, a conserved function for pregnancy-specific beta 1-glycoproteins. Mol. Hum. Reprod. 24:602–612, 2018.

    Google Scholar 

  50. Waterhouse, R., C. Ha, and G. S. Dveksler. Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J. Exp. Med. 195:277–282, 2002.

    Google Scholar 

  51. Wurz, H., H. J. Geiger, A. Jabs-Lehmann, H. Bohn, and G. Luben. Radioimmunoassay of SP1 (Pregnancy-specific beta1-glycoprotein) in maternal blood and in amniotic fluid in normal and pathologic pregnancies. J. Perinat. Med. 9:67–78, 1981.

    Google Scholar 

  52. Yue, K., G. Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, and A. Khademhosseini. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 73:254–271, 2015.

    Google Scholar 

  53. Zambuto, S., K. B. H. Clancy, and B. A. C. Harley. A gelatin hydrogel to study endometrial angiogenesis and trophoblast invasion. Interface Focus. 9:20190016, 2019.

    Google Scholar 

  54. Zambuto, S. G., K. B. H. Clancy, and B. A. C. Harley. Tuning trophoblast motility in a gelatin hydrogel via soluble cues from the maternal-fetal interface. Tissue Eng. Part A. 00:1–10, 2020.

    Google Scholar 

  55. Zhou, G.-Q., V. Baranov, W. Zimmermann, F. Grunert, B. Erhard, L. Mincheva-Nilsson, S. Hammarstrom, and J. Thompson. Highly specific monoclonal antibody demonstrates that pregnancy-specific glycoprotein (PSG) is limited to syncytiotrophoblast in human early and term placenta. Placenta. 18:491–501, 1997.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gil Mor (Yale University School of Medicine, New Haven, CT) for providing the Swan71 cells. The authors also thank the School of Chemical Sciences Cell Media Facility (Dr. Sandy McMasters) at the University of Illinois at Urbana-Champaign for assistance with cell media for the nascent protein experiment and the Institute for Genomic Biology Core Facilities (Dr. Austin Cyphersmith) at the University of Illinois at Urbana-Champaign for assistance with confocal imaging.

Author Contributions

SGZ designed and conducted experiments, analyzed resultant data, and wrote the manuscript. SR generated the recombinant PSGs. GD conceived of the study and edited the manuscript. BACH conceived of the study, designed experiments, provided guidance, and edited the manuscript.

Funding

Research reported was supported by the National Institutes of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under Award Numbers R01 DK0099528 (B.A.C.H.), National Institute of Allergy and Infectious Diseases under Award R21 AI1290918 (G.D.) and by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Numbers R21 EB018481 (B.A.C.H.) and T32 EB019944 (S.G.Z.). The content herein is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Defense. The authors also gratefully acknowledge additional funding provided by the Department of Chemical & Biomolecular Engineering and the Carl R. Woese Institute for Genomic Biology at the University of Illinois at Urbana-Champaign.

Data Availability

The raw data required to reproduce these findings are available upon request. Please contact the corresponding author to obtain raw data files.

Conflict of interest

Samantha G. Zambuto, Shemona Rattila, Gabriela Dveksler, and Brendan A.C. Harley declare they have no conflict of interest.

Ethical Approval

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Consent to Participate

Not applicable

Consent for Publication

This publication has been approved by all co-authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan A. C. Harley.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zambuto, S.G., Rattila, S., Dveksler, G. et al. Effects of Pregnancy-Specific Glycoproteins on Trophoblast Motility in Three-Dimensional Gelatin Hydrogels. Cel. Mol. Bioeng. 15, 175–191 (2022). https://doi.org/10.1007/s12195-021-00715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00715-7

Keywords

  • Biomaterials
  • Tissue engineering
  • Pregnancy
  • Proteins