Skip to main content

Evaluating the Role of IL-1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium

Abstract

Introduction

In vivo, breast cancer cells spend on average 3–7 days adhered to the endothelial cells inside the vascular lumen before entering the brain. IL-1β is one of the highly upregulated molecules in brain-seeking triple negative breast cancer (TNBC) cells. In this study, the effect of IL-1β on the blood–brain barrier (BBB) and astrocytes and its role in transmigration of TNBC cells were evaluated.

Methods

The effect of IL-1β on transendothelial electrical resistance, gene and protein expression of human induced pluripotent stem cell-derived brain-specific microvascular endothelial-like cells (iBMECs) was studied. Transport of IL-1β across the iBMEC layer was investigated and the effect of IL-1β treatment of astrocytes on their cytokine and chemokine secretome was evaluated with a cytokine membrane array. Using BBB-on-a-chip devices, transmigration of MDA-MB-231 cells and their brain-seeking variant (231BR) across the iBMECs was studied, and the effect of an IL-1β neutralizing antibody on TNBC cell transmigration was investigated.

Results

We showed that IL-1β reduces BBB integrity and induces endothelial-to-mesenchymal transition in iBMECs. IL-1β crosses the iBMEC layer and induces secretion of multiple chemokines by astrocytes, which can enhance TNBC cell transmigration across the BBB. Transmigration assays in a BBB-on-a-chip device showed that 231BR cells have a higher rate of transmigration across the iBMECs compared to MDA-MB-231 cells, and IL-1β pretreatment of BBB-on-a-chip devices increases the number of transmigrated MDA-MB-231 cells. Finally, we demonstrated that neutralizing IL-1β reduces the rate of 231BR cell transmigration.

Conclusion

IL-1β plays a significant role in transmigration of brain-seeking TNBC cells across the BBB.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Al-Yafeai, Z., A. Yurdagul, J. M. Peretik, M. Alfaidi, P. A. Murphy, and A. W. Orr. Endothelial FN (Fibronectin) deposition by α5β1 integrins drives atherogenic inflammation. Arterioscler. Thromb. Vasc. Biol. 38:2601–2614, 2018.

    Google Scholar 

  2. Al-Yahya, S., et al. Human Cytokinome Analysis for Interferon Response. J. Virol. 89:7108–7119, 2015.

    Google Scholar 

  3. Amaral, M. L., G. A. Erikson, and M. N. Shokhirev. BART: bioinformatics array research tool. BMC Bioinformatics. 19:1–6, 2018.

    Google Scholar 

  4. An, G., et al. Effects of CCL5 on the biological behavior of breast cancer and the mechanisms of its interaction with tumor-associated macrophages. Oncol. Rep. 42:2499–2511, 2019.

    Google Scholar 

  5. Argaw, A. T., et al. IL-1β regulates blood–brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J. Immunol. 177:5574–5584, 2006.

    Google Scholar 

  6. Avraham, H. K., S. Jiang, Y. Fu, H. Nakshatri, H. Ovadia, and S. Avraham. Angiopoietin-2 mediates blood–brain barrier impairment and colonization of triple-negative breast cancer cells in brain. J. Pathol. 232:369–381, 2014.

    Google Scholar 

  7. Beard, R. S., et al. Non-muscle Mlck is required for ß-catenin- and FoxO1-dependent downregulation of Cldn5 in IL-1ß-mediated barrier dysfunction in brain endothelial cells. J. Cell Sci. 127:1840–1853, 2014.

    Google Scholar 

  8. Bersini, S., et al. A microfluidic 3D invitro model for specificity of breast cancer metastasis to bone. Biomaterials. 35:2454–2461, 2014.

    Google Scholar 

  9. Blamire, A. M., D. C. Anthony, B. Rajagopalan, N. R. Sibson, V. H. Perry, and P. Styles. Interleukin-1β-induced changes in blood–brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: A magnetic resonance study. J. Neurosci. 20:8153–8159, 2000.

    Google Scholar 

  10. Bos, P. D., et al. Genes that mediate breast cancer metastasis to the brain. Nature. 459:1005–1009, 2009.

    Google Scholar 

  11. Bubendorf, L., et al. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum. Pathol. 31:578–583, 2000.

    Google Scholar 

  12. Chaudhuri, V., L. Zhou, and M. Karasek. Inflammatory cytokines induce the transformation of human dermal microvascular endothelial cells into myofibroblasts: a potential role in skin fibrogenesis. J. Cutan. Pathol. 34:146–153, 2007.

    Google Scholar 

  13. Deeb, A., S.-U. Haque, and O. Olowokure. Pulmonary metastases in pancreatic cancer, is there a survival influence? J. Gastrointest. Oncol. 6:E48-51, 2015.

    Google Scholar 

  14. Derada Troletti, C., et al. Inflammation-induced endothelial to mesenchymal transition promotes brain endothelial cell dysfunction and occurs during multiple sclerosis pathophysiology. Cell Death Dis. 10:1–13, 2019.

  15. Drolez, A., et al. Selection of a relevant in vitro blood–brain barrier model to investigate Pro-Metastatic features of human breast cancer cell lines. PLoS ONE. 11:1–18, 2016.

    Google Scholar 

  16. Fan, J., and B. M. Fu. Quantification of malignant breast cancer cell MDA-MB-231 transmigration across brain and lung microvascular endothelium. Ann. Biomed. Eng. 44:2189–2201, 2016.

    Google Scholar 

  17. Fares, J., D. Kanojia, A. Rashidi, I. Ulasov, and M.S. Lesniak. Genes that mediate metastasis across the blood–brain barrier. Trends in Cancer 6:660–676, 2020.

  18. Farmaki, E., I. Chatzistamou, V. Kaza, and H. Kiaris. A CCL8 gradient drives breast cancer cell dissemination. Physiol. Behav. 176:139–148, 2017.

    Google Scholar 

  19. Ferreira, F. U., et al. Endothelial cells tissue-specific origins affects their responsiveness to TGF-β2 during endothelial-to-mesenchymal transition. Int. J. Mol. Sci. 20:1–14, 2019.

    Google Scholar 

  20. Gasparics, Á., L. Rosivall, I. A. Krizbai, and A. Sebe. When the endothelium scores an own goal: endothelial cells actively augment metastatic extravasation through endothelial-mesenchymal transition. Am. J. Physiol. Heart Circ. Physiol. 310(9):H1055–H1063, 2016.

  21. Gray, K. M., D. B. Katz, E. G. Brown, and K. M. Stroka. Quantitative phenotyping of cell–cell junctions to evaluate ZO-1 presentation in brain endothelial cells. Ann. Biomed. Eng. 47:1675–1687, 2019.

    Google Scholar 

  22. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: The next generation. Cell 144:646–674, 2011.

  23. Harati, R., S. Hafezi, A. Mabondzo, and A. Tlili. Silencing miR-202-3p increases MMP-1 and promotes a brain invasive phenotype in metastatic breast cancer cells. PLoS ONE. 15:1–26, 2020.

    Google Scholar 

  24. Haskó, J., et al. Response of the neurovascular unit to brain metastatic breast cancer cells. Acta Neuropathol. Commun. 7:133, 2019.

    Google Scholar 

  25. Heitz, F., et al. Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur. J. Cancer. 45:2792–2798, 2009.

    Google Scholar 

  26. Herman, H., et al. Paracellular and transcellular migration of metastatic cells through the cerebral endothelium. J. Cell. Mol. Med. 23:2619–2631, 2019.

    Google Scholar 

  27. Hewett, S. J., N. A. Jackman, and R. J. Claycomb. Interleukin-1β in Central Nervous System Injury and Repair. Eur. J. Neurodegener. Dis. 1:195–211, 2012.

    Google Scholar 

  28. Kemper, E. M., W. Boogerd, I. Thuis, J. H. Beijnen, and O. van Tellingen. Modulation of the blood–brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat. Rev. 30:415–423, 2004.

    Google Scholar 

  29. Kim, M. O., H. S. Suh, C. F. Brosnan, and S. C. Lee. Regulation of RANTES/CCL5 expression in human astrocytes by interleukin-1 and interferon-β. J. Neurochem. 90:297–308, 2004.

    Google Scholar 

  30. Klein, S., et al. α5β1 Integrin activates an NF-κB-dependent program of gene expression important for angiogenesis and inflammation. Mol. Cell. Biol. 22:5912–5922, 2002.

    Google Scholar 

  31. Krizbai, I. A., et al. Endothelial-mesenchymal transition of brain endothelial cells: possible role during metastatic extravasation. PLoS ONE. 10:1–19, 2015.

    Google Scholar 

  32. Lee, Y. T., and D. A. Geer. Primary liver cancer: pattern of metastasis. J. Surg. Oncol. 36:26–31, 1987.

    Google Scholar 

  33. Li, J. Y., et al. The chemokine receptor CCR4 promotes tumor growth and lung metastasis in breast cancer. Breast Cancer Res. Treat. 131:837–848, 2012.

    Google Scholar 

  34. Lim, S. Y., A. E. Yuzhalin, A. N. Gordon-Weeks, and R. J. Muschel. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget. 7:28697–28710, 2016.

    Google Scholar 

  35. Lin, C.-C., and B. T. Edelson. New insights into the role of IL-1β in experimental autoimmune encephalomyelitis and multiple sclerosis. J. Immunol. 198:4553–4560, 2017.

    Google Scholar 

  36. Lippmann, E. S., A. Al-Ahmad, S. M. Azarin, S. P. Palecek, and E. V. Shusta. A retinoic acid-enhanced, multicellular human blood–brain barrier model derived from stem cell sources. Sci. Rep. 4:4160, 2014.

    Google Scholar 

  37. Lippmann, E. S., S. M. Azarin, S. P. Palecek, and E. V. Shusta. Commentary on human pluripotent stem cell-based blood–brain barrier models. Fluids Barriers CNS BioMed Central. 17:4–9, 2020.

    Google Scholar 

  38. Lorger, M., and B. Felding-Habermann. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am. J. Pathol. 176:2958–2971, 2010.

    Google Scholar 

  39. Lorger, M., H. Lee, J. S. Forsyth, and B. Felding-Habermann. Comparison of in vitro and in vivo approaches to studying brain colonization by breast cancer cells. J. Neurooncol. 104:689–696, 2011.

    Google Scholar 

  40. Maleszewska, M., J. R. A. J. Moonen, N. Huijkman, B. van de Sluis, G. Krenning, and M. C. Harmsen. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology. 218:443–454, 2013.

    Google Scholar 

  41. McLay, R. N., A. J. Kastin, and J. E. Zadina. Passage of interleukin-1-beta across the blood–brain barrier is reduced in aged mice: a possible mechanism for diminished fever in aging. Neuroimmunomodulation. 8:148–153, 2000.

    Google Scholar 

  42. Miller, S. J. Astrocyte heterogeneity in the adult central nervous system. Front. Cell. Neurosci. 12:1–6, 2018.

    Google Scholar 

  43. Molnár, J., et al. Transmigration characteristics of breast cancer and melanoma cells through the brain endothelium: Role of Rac and PI3K. Cell Adhes. Migr. 10:269–281, 2016.

    Google Scholar 

  44. Motallebnejad, P., and S. M. Azarin. Chemically defined human vascular laminins for biologically relevant culture of hiPSC-derived brain microvascular endothelial cells. Fluids Barriers CNS BioMed Central. 17:1–16, 2020.

    Google Scholar 

  45. Motallebnejad, P., A. Thomas, S. L. Swisher, and S. M. Azarin. An isogenic hiPSC-derived BBB-on-a-chip. Biomicrofluidics. 13:1–13, 2019.

    Google Scholar 

  46. Nibbs, R. J. B., and G. J. Graham. Immune regulation by atypical chemokine receptors. Nat. Rev. Immunol. 13:815–829, 2013.

    Google Scholar 

  47. Nieder, C., O. Spanne, M. P. Mehta, A. L. Grosu, and H. Geinitz. Presentation, patterns of care, and survival in patients with brain metastases: What has changed in the last 20 years? Cancer. 117:2505–2512, 2011.

    Google Scholar 

  48. O’Carroll, S. J., et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J. Neuroinflammation. 12:1–18, 2015.

    Google Scholar 

  49. Pan, W., K. P. Stone, H. Hsuchou, V. K. Manda, Y. Zhang, and A. J. Kastin. Cytokine signaling modulates BBB function. Curr Pharm Des. 17:3729–3740, 2014.

    Google Scholar 

  50. Platta, C. S., D. Khuntia, M. P. Mehta, and J. H. Suh. Current treatment strategies for brain metastasis and complications from therapeutic techniques NCF in brain metastasis. Am. J. Clin. Oncol. 33:398–407, 2010.

    Google Scholar 

  51. Pranda, M. A., K. M. Gray, A. J. L. DeCastro, G. M. Dawson, J. W. Jung, and K. M. Stroka. Tumor cell mechanosensing during incorporation into the brain microvascular endothelium. Cell. Mol. Bioeng. 12:455–480, 2019.

    Google Scholar 

  52. Rajaram, M., J. Li, M. Egeblad, and R. S. Powers. System-wide analysis reveals a complex network of tumor-fibroblast interactions involved in tumorigenicity. PLoS Genet. 9:e1003789, 2013.

    Google Scholar 

  53. Rempe, R. G., A. M. S. Hartz, and B. Bauer. Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers. J. Cereb. Blood Flow Metab. 36:1481–1507, 2016.

    Google Scholar 

  54. Rieder, F., et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am. J. Pathol. 179:2660–2673, 2011.

    Google Scholar 

  55. Romero-Moreno, R., et al. The CXCL5/CXCR2 axis is sufficient to promote breast cancer colonization during bone metastasis. Nat. Commun. 10:4404, 2019.

    Google Scholar 

  56. Rostami, R., S. Mittal, P. Rostami, F. Tavassoli, and B. Jabbari. Brain metastasis in breast cancer: a comprehensive literature review. J. Neurooncol. 127:407–414, 2016.

    Google Scholar 

  57. Sadowska, G. B., et al. Interleukin-1β transfer across the blood–brain barrier in the ovine fetus. J. Cereb. Blood Flow Metab. 35:1388–1395, 2015.

    Google Scholar 

  58. Shaftel, S. S., W. S. T. Griffin, and K. M. Kerry. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflammation. 5:1–12, 2008.

    Google Scholar 

  59. Shumakovich, M. A., C. P. Mencio, J. S. Siglin, R. A. Moriarty, H. M. Geller, and K. M. Stroka. Astrocytes from the brain microenvironment alter migration and morphology of metastatic breast cancer cells. FASEB J. 31:5049–5067, 2017.

    Google Scholar 

  60. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2020. CA Cancer J. Clin. 70:7–30, 2020.

    Google Scholar 

  61. Skinner, R. A., R. M. Gibson, N. J. Rothwell, E. Pinteaux, and J. I. Penny. Transport of interleukin-1 across cerebromicrovascular endothelial cells. Br. J. Pharmacol. 156:1115–1123, 2009.

    Google Scholar 

  62. Spampinato, S. F., V. Bortolotto, P. L. Canonico, M. A. Sortino, and M. Grilli. Astrocyte-derived paracrine signals: relevance for neurogenic niche regulation and blood–brain barrier integrity. Front. Pharmacol. 10:1–9, 2019.

    Google Scholar 

  63. Stamatovic, S. M., A. M. Johnson, R. F. Keep, and A. V. Andjelkovic. Junctional proteins of the blood–brain barrier: new insights into function and dysfunction. Tissue Barriers. 4:1–12, 2016.

    Google Scholar 

  64. Stebbins, M. J., H. K. Wilson, S. G. Canfield, T. Qian, S. P. Palecek, and E. V. Shusta. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 101:93–102, 2015.

    Google Scholar 

  65. Tulotta, C., et al. Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clin. Cancer Res. 25:2769–2782, 2019.

    Google Scholar 

  66. Tulotta, C., and P. Ottewell. The role of IL-1B in breast cancer bone metastasis. Endocr. Relat. Cancer. 25:R421–R434, 2018.

    Google Scholar 

  67. Uhlén, M., et al. The human secretome. Sci. Signal. 12:1–9, 2019.

    Google Scholar 

  68. Vacchini, A., M. Locati, and E. M. Borroni. Overview and potential unifying themes of the atypical chemokine receptor family. J. Leukoc. Biol. 99:883–892, 2016.

    Google Scholar 

  69. Valiente, M., et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell. 156:1002–1016, 2014.

    Google Scholar 

  70. Wang, L., et al. Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS ONE. 8:e80933, 2013.

    Google Scholar 

  71. Wasilewski, D., Priego, N., Fustero-Torre, C., and M. Valiente. Reactive astrocytes in brain metastasis. Front. Oncol. 7:1–12, 2017.

  72. Wrobel, J. K., and M. Toborek. Blood–brain barrier remodeling during brain metastasis formation. Mol. Med. 22:32–40, 2016.

    Google Scholar 

  73. Xing, F., et al. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol. Med. 5(3):384–396, 2013.

    Google Scholar 

  74. Xing, F., et al. MiR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-α. Oncogene. 34:4890–4900, 2015.

    Google Scholar 

  75. Xing, F., et al. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res. 76:4970–4980, 2016.

    Google Scholar 

  76. Xu, H., Z. Li, Y. Yu, S. Sizdahkhani, W. S. Ho, and F. Yin. A dynamic in vivo-like organotypic blood–brain barrier model to probe metastatic brain tumors. Sci. Rep. 6:1–12, 2016.

    Google Scholar 

  77. Yang, C., et al. CXCL1 stimulates migration and invasion in ER-negative breast cancer cells via activation of the ERK/MMP2/9 signaling axis. Int. J. Oncol. 55:684–696, 2019.

    Google Scholar 

Download references

Acknowledgments

Portions of this work were conducted in the Minnesota Nano Center, which is supported by the National Science Foundation through the National Nano Coordinated Infrastructure Network (NNCI) under Award Number ECCS-2025124. Confocal microscopy and image analysis was performed using the Nikon A1Rsi Confocal microscope and NIS-Elements software at the University Imaging Center, University of Minnesota.

Conflict of interest

All authors (PM, VVR, and SMA) declare that they have no conflict of interests.

Ethical Approval

No human or animal studies were carried out by the authors for this article.

Funding

This work was supported by the University of Minnesota.

Author information

Authors and Affiliations

Authors

Contributions

PM and SMA designed the experiments. PM and VVR performed the experiments and analyzed the data. PM and SMA wrote and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Samira M. Azarin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Michael R. King oversaw the review of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1497 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Motallebnejad, P., Rajesh, V.V. & Azarin, S.M. Evaluating the Role of IL-1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium. Cel. Mol. Bioeng. 15, 99–114 (2022). https://doi.org/10.1007/s12195-021-00710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00710-y

Keywords

  • Brain metastasis
  • Breast cancer
  • Blood–brain barrier
  • Astrocytes
  • Chemokines
  • BBB-on-a-chip
  • Pluripotent stem cells
  • Endothelial-to-mesenchymal transition