Skip to main content

Advertisement

Log in

Shear-Mediated Platelet Activation is Accompanied by Unique Alterations in Platelet Release of Lipids

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Platelet activation by mechanical means such as shear stress exposure, is a vital driver of thrombotic risk in implantable blood-contacting devices used in the treatment of heart failure. Lipids are essential in platelets activation and have been studied following biochemical activation. However, little is known regarding lipid alterations occurring with mechanical shear-mediated platelet activation.

Methods

Here, we determined if shear-activation of platelets induced lipidome changes that differ from those associated with biochemically-mediated platelet activation. We performed high-resolution lipidomic analysis on purified platelets from four healthy human donors. For each donor, we compared the lipidome of platelets that were non-activated or activated by shear, ADP, or thrombin treatment.

Results

We found that shear activation altered cell-associated lipids and led to the release of lipids into the extracellular environment. Shear-activated platelets released 21 phospholipids and sphingomyelins at levels statistically higher than platelets activated by biochemical stimulation.

Conclusions

We conclude that shear-mediated activation of platelets alters the basal platelet lipidome. Further, these alterations differ and are unique in comparison to the lipidome of biochemically activated platelets. Many of the released phospholipids contained an arachidonic acid tail or were phosphatidylserine lipids, which have known procoagulant properties. Our findings suggest that lipids released by shear-activated platelets may contribute to altered thrombosis in patients with implanted cardiovascular therapeutic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akiba, S., T. Murata, K. Kitatani, and T. Sato. Involvement of lipoxygenase pathway in docosapentaenoic acid-induced inhibition of platelet aggregation. Biol. Pharma Bull. 23:1293–1297, 2000.

    Article  Google Scholar 

  2. Alkhamis, T. M., R. L. Beissinger, and J. R. Chediak. Artificial surface effect on red blood cells and platelets in laminar shear flow. Blood. 75:1568–1575, 1990.

    Article  Google Scholar 

  3. Alves, M. A., S. Lamichhane, A. Dickens, A. McGlinchey, H. C. Ribeiro, P. Sen, et al. Systems biology approaches to study lipidomes in health and disease. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 1866(2):158857, 2020.

    Article  Google Scholar 

  4. Apostoli, A., V. Bianchi, N. Bono, A. Dimasi, K. R. Ammann, Y. R. Moiia, et al. Prothrombotic activity of cytokine-activated endothelial cells and shear-activated platelets in the setting of ventricular assist device support. J. Heart Lung Transplant. 38:658–667, 2019.

    Article  Google Scholar 

  5. Barry, O. P., D. Pratico, J. A. Lawson, and G. A. FitzGerald. Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles. J. Clin. Invest. 99:2118–2127, 1997.

    Article  Google Scholar 

  6. Benjamin, E. J., P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway, A. P. Carson, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 139:e56–e528, 2019.

    Article  Google Scholar 

  7. Biró, E., J. W. Akkerman, F. J. Hoek, G. Gorter, L. M. Pronk, A. Sturk, et al. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J. Thromb. Haemost. 3:2754–2763, 2005.

    Article  Google Scholar 

  8. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35:1533–1540, 2002.

    Article  Google Scholar 

  9. Chang, C. P., J. Zhao, T. Wiedmer, and P. J. Sims. Contribution of platelet microparticle formation and granule secretion to the transmembrane migration of phosphatidylserine. J. Biol. Chem. 268:7171–7178, 1993.

    Article  Google Scholar 

  10. Chen, Z., S. K. Jena, G. A. Giridharan, S. C. Koenig, M. S. Slaughter, B. P. Griffith, et al. Flow features and device-induced blood trauma in CF-VADs under a pulsatile blood flow condition: A CFD comparative study. Int. J. Numer. Method. Biomed. Eng. 34:15, 2018.

    Article  Google Scholar 

  11. Chiu, W. C., P. L. Tran, Z. Khalpey, E. Lee, Y. R. Woo, M. J. Slepian, et al. Device thrombogenicity emulation: an in silico predictor of in vitro and in vivo ventricular assist device thrombogenicity. Sci. Rep. 9:2946, 2019.

    Article  Google Scholar 

  12. Clark, S. R., C. P. Thomas, V. J. Hammond, M. Aldrovandi, G. W. Wilkinson, K. W. Hart, et al. Characterization of platelet aminophospholipid externalization reveals fatty acids as molecular determinants that regulate coagulation. Proc. Natl. Acad. Sci U. S. A. 110:5875–5880, 2013.

    Article  Google Scholar 

  13. Fadeel, B., and D. Xue. The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit. Rev. Biochem. Mol. Biol. 44:264–277, 2009.

    Article  Google Scholar 

  14. Fahy, E., S. Subramaniam, R. C. Murphy, M. Nishijima, C. R. Raetz, T. Shimizu, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid. Res. 50:S9–S14, 2009.

    Article  Google Scholar 

  15. Foin, N., J. L. Gutierrez-Chico, S. Nakatani, R. Torii, C. V. Bourantas, S. Sen, et al. Incomplete stent apposition causes high shear flow disturbances and delay in neointimal coverage as a function of strut to wall detachment distance: implications for the management of incomplete stent apposition. Circ. Cardiovasc. Interv. 7:180–189, 2014.

    Article  Google Scholar 

  16. Frelinger, A. L., 3rd., M. I. Furman, M. D. Linden, Y. Li, M. L. Fox, M. R. Barnard, et al. Residual arachidonic acid-induced platelet activation via an adenosine diphosphate-dependent but cyclooxygenase-1- and cyclooxygenase-2-independent pathway: a 700-patient study of aspirin resistance. Circulation. 113:2888–2896, 2006.

    Article  Google Scholar 

  17. Gao, Z., F. Liu, Z. Yu, X. Bai, C. Yang, F. Zhuang, et al. Effects of von Willebrand factor concentration and platelet collision on shear-induced platelet activation. Thromb. Haemost. 100:60–68, 2008.

    Article  Google Scholar 

  18. Girdhar, G., M. Xenos, Y. Alemu, W. C. Chiu, B. E. Lynch, J. Jesty, et al. Device thrombogenicity emulation: a novel method for optimizing mechanical circulatory support device thromboresistance. PLoS ONE. 7:32463, 2012.

    Article  Google Scholar 

  19. Hanke, J. S., G. Dogan, L. Wert, M. Ricklefs, J. Heimeshoff, A. Chatterjee, et al. Left ventricular assist device exchange for the treatment of HeartMate II pump thrombosis. J. Thorac. Dis. 10:S1728–S1736, 2018.

    Article  Google Scholar 

  20. Hansen, C. E., Y. Qiu, O. J. T. McCarty, and W. A. Lam. Platelet Mechanotransduction. Annu. Rev. Biomed. Eng. 20:253–275, 2018.

    Article  Google Scholar 

  21. Heijnen, H. F. G., and S. J. A. Korporaal. Platelet Morphology and Ultrastructure. In: Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics: an Update, edited by P. Gresele, N. S. Kleiman, J. A. Lopez, and C. P. Page. Cham: Springer International Publishing, 2017, pp. 21–37.

    Chapter  Google Scholar 

  22. Hemker, H. C., J. L. van Rijn, J. Rosing, G. van Dieijen, E. M. Bevers, and R. F. Zwaal. Platelet membrane involvement in blood coagulation. Blood Cells. 9:303–317, 1983.

    Google Scholar 

  23. Holme, P. A., U. Orvim, M. J. Hamers, N. O. Solum, F. R. Brosstad, R. M. Barstad, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler. Thromb. Vasc. Biol. 17:646–653, 1997.

    Article  Google Scholar 

  24. Hu, Q., M. Wang, M. S. Cho, C. Wang, A. M. Nick, P. Thiagarajan, et al. Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. BBA Clin. 6:76–81, 2016.

    Article  Google Scholar 

  25. Jakubowski, J. A., and N. G. Ardlie. Evidence for the mechanism by which eicosapentaenoic acid inhibits human platelet aggregation and secretion - implications for the prevention of vascular disease. Thromb. Res. 16:205–217, 1979.

    Article  Google Scholar 

  26. Jesty, J., and D. Bluestein. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: elimination of the feedback activation of platelets by thrombin. Anal. Biochem. 272:64–70, 1999.

    Article  Google Scholar 

  27. Jesty, J., W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets. 14:143–149, 2003.

    Article  Google Scholar 

  28. Kapil, N., Y. H. Datta, N. Alakbarova, E. Bershad, M. Selim, D. S. Liebeskind, et al. Antiplatelet and anticoagulant therapies for prevention of ischemic stroke. Clin. Appl. Thromb. Hemost. 23:301–318, 2017.

    Article  Google Scholar 

  29. Kasahara, K., M. Kaneda, T. Miki, K. Iida, N. Sekino-Suzuki, I. Kawashima, et al. Clot retraction is mediated by factor XIII-dependent fibrin-alphaIIbbeta3-myosin axis in platelet sphingomyelin-rich membrane rafts. Blood. 122:3340–3348, 2013.

    Article  Google Scholar 

  30. Kheradvar, A., and G. Pedrizzetti. Vortex Formation in the Cardiovascular System. New York: Springer, 2012.

    Book  Google Scholar 

  31. Kirklin, J. K., D. C. Naftel, R. L. Kormos, F. D. Pagani, S. L. Myers, L. W. Stevenson, et al. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J. Heart Lung Transpl. 33:12–22, 2014.

    Article  Google Scholar 

  32. Koseoglu, S., A. F. Meyer, D. Kim, B. M. Meyer, Y. Wang, J. J. Dalluge, et al. Analytical characterization of the role of phospholipids in platelet adhesion and secretion. Anal. Chem. 87:413–421, 2015.

    Article  Google Scholar 

  33. LaDisa, J. F., L. E. Olson, I. Guler, D. A. Hettrick, S. H. Audi, J. R. Kersten, et al. Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J. Appl. Physiol. 2004(97):424–430, 1985.

    Google Scholar 

  34. Lepropre, S., S. Kautbally, M. Octave, A. Ginion, M. B. Onselaer, G. R. Steinberg, et al. AMPK-ACC signaling modulates platelet phospholipids and potentiates thrombus formation. Blood. 132:1180–1192, 2018.

    Article  Google Scholar 

  35. Leung, S. L., Y. Lu, D. Bluestein, and M. J. Slepian. Dielectrophoresis-mediated electrodeformation as a means of determining individual platelet stiffness. Ann. Biomed. Eng. 44:903–913, 2016.

    Article  Google Scholar 

  36. Lhermusier, T., H. Chap, and B. Payrastre. Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome. J. Thromb. Haemost. 9:1883–1891, 2011.

    Article  Google Scholar 

  37. Lim, W. Y., G. Lloyd, and S. Bhattacharyya. Mechanical and surgical bioprosthetic valve thrombosis. Heart. 103:1934–1941, 2017.

    Google Scholar 

  38. Marcus, A. J. The role of lipids in platelet function: with particular reference to the arachidonic acid pathway. J. Lipid. Res. 19:793–826, 1978.

    Article  Google Scholar 

  39. Melamud, E., L. Vastag, and J. D. Rabinowitz. Metabolomic analysis and visualization engine for LC-MS data. Anal. Chem. 82:9818–9826, 2010.

    Article  Google Scholar 

  40. Michelson, A. D., M. Cattaneo, J. W. Eikelboom, P. Gurbel, K. Kottke-Marchant, T. J. Kunicki, et al. Aspirin resistance: position paper of the Working Group on Aspirin Resistance. J. Thromb. Haemost. 3:1309–1311, 2005.

    Article  Google Scholar 

  41. Miyazaki, Y., S. Nomura, T. Miyake, H. Kagawa, C. Kitada, H. Taniguchi, et al. High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood. 88:3456–3464, 1996.

    Article  Google Scholar 

  42. Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54:64–72, 2008.

    Article  Google Scholar 

  43. O’Donnell, V. B., R. C. Murphy, and S. P. Watson. Platelet lipidomics: modern day perspective on lipid discovery and characterization in platelets. Circ.Res. 114:1185–1203, 2014.

    Article  Google Scholar 

  44. Patrono, C., B. Coller, G. A. FitzGerald, J. Hirsh, and G. Roth. Platelet-active drugs: the relationships among dose, effectiveness, and side effects: the Seventh ACCP conference on Antithrombotic and Thrombolytic Therapy. Chest. 126:234S-264S, 2004.

    Article  Google Scholar 

  45. Peng, B., S. Geue, C. Coman, P. Münzer, D. Kopczynski, C. Has, et al. Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome. Blood. 132:e1–e12, 2018.

    Article  Google Scholar 

  46. Pienimaeki-Roemer, A., K. Kuhlmann, A. Bottcher, T. Konovalova, A. Black, E. Orso, et al. Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets. Transfusion. 55:507–521, 2015.

    Article  Google Scholar 

  47. Prescott, S. M., and P. W. Majerus. The fatty acid composition of phosphatidylinositol from thrombin-stimulated human platelets. J. Biol. Chem. 256:579–582, 1981.

    Article  Google Scholar 

  48. Reejhsinghani, R., and A. S. Lotfi. Prevention of stent thrombosis: challenges and solutions. Vasc. Health Risk Manag. 11:93–106, 2015.

    Google Scholar 

  49. Roka-Moiia, Y., K. R. Ammann, S. Miller-Gutierrez, A. Sweedo, D. Palomares, J. Italiano, et al. Shear-mediated platelet activation in the free flow II: Evolving mechanobiological mechanisms reveal an identifiable signature of activation and a bi-directional platelet dyscrasia with thrombotic and bleeding features. J. Biomech. 123:110415, 2021.

    Article  Google Scholar 

  50. Roka-Moiia, Y., S. Miller-Gutierrez, D. E. Palomares, J. E. Italiano, J. Sheriff, D. Bluestein, et al. Platelet dysfunction during mechanical circulatory support: elevated shear stress promotes downregulation of alphaIIbbeta3 and GPIb via microparticle shedding decreasing platelet aggregability. Arterioscler. Thromb. Vasc. Biol. 41:1319–1336, 2021.

    Article  Google Scholar 

  51. Roka-Moiia, Y., R. Walk, D. E. Palomares, K. R. Ammann, A. Dimasi, J. E. Italiano, et al. Platelet activation via shear stress exposure induces a differing pattern of biomarkers of activation versus biochemical agonists. Thromb. Haemost. 120:776–792, 2020.

    Article  Google Scholar 

  52. Sakariassen, K. S., P. A. Holme, U. Orvim, R. M. Barstad, N. O. Solum, and F. R. Brosstad. Shear-induced platelet activation and platelet microparticle formation in native human blood. Thromb. Res. 92:S33-41, 1998.

    Article  Google Scholar 

  53. Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.

    Article  Google Scholar 

  54. Sheriff, J., J. S. Soares, M. Xenos, J. Jesty, M. J. Slepian, and D. Bluestein. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann. Biomed. Eng. 41:1279–1296, 2013.

    Article  Google Scholar 

  55. Sheriff, J., P. L. Tran, M. Hutchinson, T. DeCook, M. J. Slepian, D. Bluestein, et al. Repetitive hypershear activates and sensitizes platelets in a dose-dependent manner. Artif. Organs. 40:586–595, 2016.

    Article  Google Scholar 

  56. Siess, W., P. Roth, B. Scherer, I. Kurzmann, B. Bohlig, and P. C. Weber. Platelet-membrane fatty acids, platelet aggregation, and thromboxane formation during a mackerel diet. Lancet. 1:441–444, 1980.

    Article  Google Scholar 

  57. Slatter, D. A., M. Aldrovandi, A. O’Connor, S. M. Allen, C. J. Brasher, R. C. Murphy, et al. Mapping the human platelet lipidome reveals cytosolic phospholipase A2 as a regulator of mitochondrial bioenergetics during activation. Cell Metab. 23:930–944, 2016.

    Article  Google Scholar 

  58. Slepian, M. J., J. Sheriff, M. Hutchinson, P. Tran, N. Bajaj, J. G. Garcia, et al. Shear-mediated platelet activation in the free flow: perspectives on the emerging spectrum of cell mechanobiological mechanisms mediating cardiovascular implant thrombosis. J. Biomech. 50:20–25, 2017.

    Article  Google Scholar 

  59. Soares, J. S., C. Gao, Y. Alemu, M. Slepian, and D. Bluestein. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach. Ann. Biomed. Eng. 41:2318–2333, 2013.

    Article  Google Scholar 

  60. Starling, R. C., N. Moazami, S. C. Silvestry, G. Ewald, J. G. Rogers, C. A. Milano, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. New EnglJ. Med. 370:33–40, 2014.

    Article  Google Scholar 

  61. Sweedo, A., M. Niemiec, L. Breshears, J. Sherriff, D. Bluestein, M. J. Slepian, et al. Repetitive Mechanostimulation of Platelets Alters Regional Membrane Stiffness and Its Distribution. Chicago IL: American Society for Artificial Internal Organs, 2020.

    Google Scholar 

  62. Sweedo, A., Y. Roka-Moiia, J. Sheriff, D. Bluestein, F. T. Arce, and M. J. Slepian. Shear-Mediated Platelet Activation is Associated with Global and Local Changes in Biomechanical Properties: Implications for Mechanism and Therapy. San Francisco CA: American Society for Artificial Internal Organs, 2019.

    Google Scholar 

  63. Sweedo, A., S. S. Saavedra, J. Sheriff, D. Bluestein, and M. J. Slepian. Platelet Membrane Fluidity: A Mechanistic Component of Shear-Mediated Platelet Activation. Washington DC: American Society for Artificial Internal Organs, 2018.

    Google Scholar 

  64. Tavoosi, N., R. L. Davis-Harrison, T. V. Pogorelov, Y. Z. Ohkubo, M. J. Arcario, M. C. Clay, et al. Molecular determinants of phospholipid synergy in blood clotting. J. Biol. Chem. 286:23247–23253, 2011.

    Article  Google Scholar 

  65. Thomas, S. G. The Structure of Resting and Activated Platelets. In: Platelets, edited by A. D. Michelson. Cambridge, MA: Academic Press, 2019, pp. 47–77.

    Chapter  Google Scholar 

  66. Tran, P. L., L. Valerio, J. Yamaguchi, W. Brengle, T. DeCook, M. Hutchinson, et al. Dimethyl Sulfoxide: A New Nemesis of Shear-Induced Platelet Activation. San Francisco, CA: Nanoengineering for Medicine and Biology, 2014.

    Google Scholar 

  67. Tsigkou, V., G. Siasos, K. Rovos, N. Tripyla, and D. Tousoulis. Peripheral artery disease and antiplatelet treatment. Curr. Opin. Pharmacol. 39:43–52, 2018.

    Article  Google Scholar 

  68. Valerio, L., J. Sheriff, P. L. Tran, W. Brengle, A. Redaelli, G. B. Fiore, et al. Routine clinical anti-platelet agents have limited efficacy in modulating hypershear-mediated platelet activation associated with mechanical circulatory support. Thromb. Res. 163:162–171, 2018.

    Article  Google Scholar 

  69. Valerio, L., P. L. Tran, J. Sheriff, W. Brengle, R. Ghosh, W. C. Chiu, et al. Aspirin has limited ability to modulate shear-mediated platelet activation associated with elevated shear stress of ventricular assist devices. Thromb. Res. 140:110–117, 2016.

    Article  Google Scholar 

  70. Viisoreanu, D., and A. Gear. Effect of physiologic shear stresses and calcium on agonist-induced platelet aggregation, secretion, and thromboxane A2 formation. Thromb. Res. 120:885–892, 2007.

    Article  Google Scholar 

  71. Virani, S. S., A. Alonso, E. J. Benjamin, M. S. Bittencourt, C. W. Callaway, A. P. Carson, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 141:e139–e596, 2020.

    Article  Google Scholar 

  72. Wei, R., J. Wang, M. Su, E. Jia, S. Chen, T. Chen, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci. Rep. 8:663, 2018.

    Article  Google Scholar 

  73. Wolberg, A. S., F. R. Rosendaal, J. I. Weitz, I. H. Jaffer, G. Agnelli, T. Baglin, et al. Venous thrombosis. Nat. Rev. Dis. Primers. 1:15006, 2015.

    Article  Google Scholar 

  74. Xi, Y., S. Harwood, L. Wise, and J. G. Purdy. Human cytomegalovirus pUL37x1 is important to remodeling of host lipid metabolism. J. Virol. 93:1–19, 2019.

    Article  Google Scholar 

  75. Xi, Y., L. Lindenmayer, I. Kline, J. von Einem, and J. G. Purdy. Human cytomegalovirus uses a host stress response to balance the elongation of saturated/monounsaturated and polyunsaturated very-long-chain fatty acids. mBio. 12:48, 2021.

    Article  Google Scholar 

  76. Yun, S. H., E. H. Sim, R. Y. Goh, J. I. Park, and J. Y. Han. Platelet activation: the mechanisms and potential biomarkers. Biomed. Res. Int. 2016:9060143, 2016.

    Article  Google Scholar 

  77. Zhang, P., C. Gao, N. Zhang, M. J. Slepian, Y. Deng, and D. Bluestein. Multiscale particle-based modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cell Mol. Bioeng. 7:552–574, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Debbie Mustacich for assistance in the initial stages of this project. We also thank the University of Arizona BIO5 Institute Statistics Consulting Lab for helpful discussion. This work was supported by the Arizona Biomedical Research Commission through the Arizona Department of Health Services (ADHS18-198868 to J.G.P.), the National Institute of Health (NIH) (T32HL007955 to A.S. and 5U01HL131052 to D.B. and M.J.S.), BIO5 Institute at the University of Arizona (Pilot Interdisciplinary Project to J.G.P, S.S.S. and M.J.S.). The content is solely the responsibility of the authors and does not necessarily represent the views of ADHS and NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Purdy.

Ethics declarations

Conflicts of interest

Alice Sweedo, Lisa M. Wise, Yana Roka-Moiia, Fernando Teran Arce, S. Scott Saavedra, Jawaad Sheriff, Danny Bluestein, Marvin J. Slepian, and John G. Purdy declare that they have no conflicts of interest.

Ethical approval

All human subjects research was carried out in accordance with the University of Arizona Institutional Review Board (IRB) approved protocol (University of Arizona IRB #1810013264). Informed consent was obtained from all donors included in the study. No animal studies were carried out by the authors for this article.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12195_2021_692_MOESM1_ESM.tif

Platelet lipidomes from individual donors. The number of lipids identified by MS1 analysis are shown for each class of lipids. Supplementary file1 (TIF 444 kb)

12195_2021_692_MOESM2_ESM.tif

Principal component analysis (PCA) of lipids found in all four donors. (a) PCA analysis was performed in Origin Pro for lipids identified in the released and cell-associated fractions in all four donors. Included were Quality Control (QC) samples of lipids extracted from pooled human serum reference material from the National Institute of Standards and Technology (NIST). (b) PCA of lipids found in the released fraction of all four donors. (c) PCA of lipids found in the cell-associated fraction of all four donors. Supplementary file2 (TIF 726 kb)

12195_2021_692_MOESM3_ESM.tif

Relative fold-change of lipids found in all four donors. The heatmap shows the relative levels of lipids measured in the released fraction of all four donors. The abundance of each lipid observed in the activated-platelet relative to its abundance in the non-activated platelet is shown in color on a log2-scale. The heatmap was hierarchical clustered using Ward's method implemented using the Seaborn library of python. Modes of activation are represented by colored boxes above each column (HSD is represented by red boxes, Thrombin by purple boxes, and ADP by black boxes). The four individual donors are listed at the bottom of the columns. Supplementary file3 (TIF 1023 kb)

12195_2021_692_MOESM4_ESM.tif

Lipids significantly altered by shear activation in three or more donors. Lipids found in the composite platelet lipidome shown in Figure 2B were tested for >2-fold change in relative lipid level and statistical significance (p ≤ 0.05). The levels of the lipid in activated platelets relative to non-activated plates is shown. Lipids significantly downregulated are shown in blue and those upregulated are show in red. Supplementary file4 (TIF 459 kb)

12195_2021_692_MOESM5_ESM.tif

Some lipid levels are significantly different between HSD-treated shear activation and ADP-treated biochemical activation in the released fraction. Analysis and visualization were done as described in Figure 5. (a) Analysis of lipids in the released fraction. (b) Analysis of lipids in the cell-associated fraction. Supplementary file5 (TIF 826 kb)

MS/MS fragment spectra of unknown lipid 782.57 shown in Figure 7. Supplementary file6 (TIF 575 kb)

Supplementary file7 (XLSX 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweedo, A., Wise, L.M., Roka-Moiia, Y. et al. Shear-Mediated Platelet Activation is Accompanied by Unique Alterations in Platelet Release of Lipids. Cel. Mol. Bioeng. 14, 597–612 (2021). https://doi.org/10.1007/s12195-021-00692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00692-x

Keywords

Navigation