Ackermann, M., S. E. Verleden, M. Kuehnel, A. Haverich, T. Welte, F. Laenger, A. Vanstapel, C. Werlein, H. Stark, A. Tzankov, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med. 383(2):120–128, 2020. https://doi.org/10.1056/NEJMoa2015432.
Article
Google Scholar
Affara, M., B. Dunmore, C. Savoie, S. Imoto, Y. Tamada, H. Araki, D. S. Charnock-Jones, S. Miyano, and C. Print. Understanding endothelial cell apoptosis: what can the transcriptome, glycome and proteome reveal? Philos. Trans. R. Soc. B 362(1484):1469–1487, 2007. https://doi.org/10.1098/rstb.2007.2129.
Article
Google Scholar
Afshar-Kharghan, V. Complement and clot. Blood 129(16):2214–2215, 2017. https://doi.org/10.1182/blood-2017-03-771501.
Article
Google Scholar
Amara, U., M. A. Flierl, D. Rittirsch, A. Klos, H. Chen, B. Acker, U. B. Brückner, B. Nilsson, F. Gebhard, and J. D. Lambris. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 185(9):5628–5636, 2010.
Article
Google Scholar
Andersson, M. I., C. V. Arancibia-Carcamo, K. Auckland, J. K. Baillie, E. Barnes, T. Beneke, S. Bibi, T. Brooks, M. Carroll, D. Crook, et al. SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res. 2020. https://doi.org/10.12688/wellcomeopenres.16002.2.
Article
Google Scholar
André, G., Christoph, B., Karlheinz, P., Axel, H., Hubert, B., Johann, M., & Eike, M. Inhaled nitric oxide inhibits human platelet aggregation, P-selectin expression, and fibrinogen binding in vitro and in vivo. Circulation 97(15):1481–1487, 1998. https://doi.org/10.1161/01.CIR.97.15.1481.
Article
Google Scholar
Azghandi, M., and M. A. Kerachian. Detection of novel coronavirus (SARS-CoV-2) RNA in peripheral blood specimens. J Transl. Med. 2020. https://doi.org/10.1186/s12967-020-02589-1.
Article
Google Scholar
Bassil, J., E. Rassy, and J. Kattan. Is blood transfusion safe during the COVID-19 pandemic? Future Sci. OA 2020. https://doi.org/10.2144/fsoa-2020-0116.
Article
Google Scholar
Bernardes, J. P., N. Mishra, F. Tran, T. Bahmer, L. Best, J. I. Blase, D. Bordoni, J. Franzenburg, U. Geisen, J. Josephs-Spaulding, et al. Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity 53(6):1296, 2020. https://doi.org/10.1016/j.immuni.2020.11.017.
Article
Google Scholar
Bonny, T. S., E. U. Patel, X. Zhu, E. M. Bloch, M. K. Grabowski, A. G. Abraham, K. Littlefield, R. Shrestha, S. E. Benner, O. Laeyendecker, et al. Cytokine and chemokine levels in COVID-19 convalescent plasma. Open Forum Infect. Dis 2020. https://doi.org/10.1093/ofid/ofaa574.
Article
Google Scholar
Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D. S. Weiss, Y. Weinrauch, and A. Zychlinsky. Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535, 2004. https://doi.org/10.1126/science.1092385.
Article
Google Scholar
Burnouf, T., C. Kappelsberger, K. Frank, and T. Burkhardt. Protein composition and activation markers in plasma collected by three apheresis procedures. Transfusion. 43(9):1223–1230, 2003.
Article
Google Scholar
Cai, X., M. Ren, F. Chen, L. Li, H. Lei, and X. Wang. Blood transfusion during the COVID-19 outbreak. Blood Transfus. 18(2):79–82, 2020. https://doi.org/10.2450/2020.0076-20.
Article
Google Scholar
Carroll, M. C. The role of complement and complement receptors in induction and regulation of immunity. Annu. Rev. Immunol. 16(1):545–568, 1998.
MathSciNet
Article
Google Scholar
Carvelli, J., O. Demaria, F. Vély, L. Batista, N. C. Benmansour, J. Fares, S. Carpentier, M.-L. Thibult, A. Morel, and R. Remark. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature 2:1–5, 2020.
Google Scholar
Donate COVID-19 Plasma. Food and Drug Administration. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/donate-covid-19-plasma. 2020. Accessed 9 Dec 2020.
Chen, Y., H. Peng, L. Wang, Y. Zhao, L. Zeng, H. Gao, and Y. Liu. Infants born to mothers with a new Coronavirus (COVID-19). Front. Pediatr. 2020. https://doi.org/10.3389/fped.2020.00104.
Article
Google Scholar
Cho, H. J., J. W. Koo, S. K. Roh, Y. K. Kim, J. S. Suh, J. H. Moon, S. K. Sohn, and D. W. Baek. COVID-19 transmission and blood transfusion: a case report. J. Infect. Public Health. 13(11):1678–1679, 2020. https://doi.org/10.1016/j.jiph.2020.05.001.
Article
Google Scholar
Clausen, T. M., D. R. Sandoval, C. B. Spliid, J. Pihl, H. R. Perrett, C. D. Painter, A. Narayanan, S. A. Majowicz, E. M. Kwong, R. N. McVicar, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 183(4):1043, 2020. https://doi.org/10.1016/j.cell.2020.09.033.
Article
Google Scholar
Conway, E. M., and E. L. G. Pryzdial. Is the COVID-19 thrombotic catastrophe complement-connected? J. Thromb. Haemost. 18(11):2812–2822, 2020. https://doi.org/10.1111/jth.15050.
Article
Google Scholar
Gallagher, J. Covid-19: Seven UK blood clot deaths after AstraZeneca vaccine. BBC News. https://www.bbc.com/news/health-56620646. 2021. Accessed 4 April 2021.
Cugno, M., P. L. Meroni, R. Gualtierotti, S. Griffini, E. Grovetti, A. Torri, M. Panigada, S. Aliberti, F. Blasi, and F. Tedesco. Complement activation in patients with COVID-19: a novel therapeutic target. J. Allergy Clin. Immunol. 146(1):215–217, 2020.
Article
Google Scholar
Del Conde, I., M. A. Crúz, H. Zhang, J. A. López, and V. Afshar-Kharghan. Platelet activation leads to activation and propagation of the complement system. J. Exp. Med. 201(6):871–879, 2005.
Article
Google Scholar
Del Turco, S., A. Vianello, R. Ragusa, C. Caselli, and G. Basta. COVID-19 and cardiovascular consequences: is the endothelial dysfunction the hardest challenge? Thromb. Res. 196:143–151, 2020. https://doi.org/10.1016/j.thromres.2020.08.039.
Article
Google Scholar
Long, Q. X., B. Z. Liu, H. J. Deng, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 26, 845–848 (2020). https://doi.org/10.1038/s41591-020-0897-1.
Article
Google Scholar
Deruelle, E., H. S. O. Ben, H. S. Sep, C. Pichereau, H. Outin, and M. Jamme. Immune thrombocytopenia in a patient with COVID-19. Int. J. Hematol. 112(6):883–888, 2020. https://doi.org/10.1007/s12185-020-02943-5.
Article
Google Scholar
Deutsch, V. R., and A. Tomer. Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. Br. J. Haematol. 161(6):778–793, 2013. https://doi.org/10.1111/bjh.12328.
Article
Google Scholar
Fan, B. E., T. Umapathi, K. Chua, Y. W. Chia, S. W. Wong, G. W. L. Tan, S. Chandrasekar, Y. H. Lum, S. Vasoo, and R. Dalan. Delayed catastrophic thrombotic events in young and asymptomatic post COVID-19 patients. J. Thromb. Thrombolysis 7:1–7, 2020. https://doi.org/10.1007/s11239-020-02332-z.
Article
Google Scholar
Fletcher-Sandersjöö, A., and B.-M. Bellander. Is COVID-19 associated thrombosis caused by overactivation of the complement cascade? A literature review. Thrombosis Res. 194:36–41, 2020. https://doi.org/10.1016/j.thromres.2020.06.027.
Article
Google Scholar
Folco, E. J., T. L. Mawson, A. Vromman, B. Bernardes-Souza, G. Franck, O. Persson, M. Nakamura, G. Newton, F. W. Luscinskas, and P. Libby. Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1α and cathepsin G. Arterioscler. Thromb. Vasc. Biol. 38(8):1901–1912, 2018.
Article
Google Scholar
Gando, S., S. Fujishima, D. Saitoh, A. Shiraishi, K. Yamakawa, S. Kushimoto, H. Ogura, T. Abe, T. Mayumi, J. Sasaki, et al. The significance of disseminated intravascular coagulation on multiple organ dysfunction during the early stage of acute respiratory distress syndrome. Thromb. Res. 191:15–21, 2020. https://doi.org/10.1016/j.thromres.2020.03.023.
Article
Google Scholar
Goldberg, R. B. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J. Clin. Endocrinol. Metabol. 94(9):3171–3182, 2009. https://doi.org/10.1210/jc.2008-2534.
Article
Google Scholar
Goldsmith, C. S., S. E. Miller, R. B. Martines, H. A. Bullock, and S. R. Zaki. Electron microscopy of SARS-CoV-2: a challenging task. Lancet (London, England). 395(10238):2020. https://doi.org/10.1016/S0140-6736(20)31188-0.
Article
Google Scholar
Gralinski, L. E., T. P. Sheahan, T. E. Morrison, V. D. Menachery, K. Jensen, S. R. Leist, A. Whitmore, M. T. Heise, and R. S. Baric. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 9(5):1–2, 2018.
Article
Google Scholar
Grobler, C., S. C. Maphumulo, L. M. Grobbelaar, J. C. Bredenkamp, G. J. Laubscher, P. J. Lourens, J. Steenkamp, D. B. Kell, and E. Pretorius. Covid-19: the rollercoaster of fibrin(Ogen), D-dimer, von willebrand factor, P-selectin and their interactions with endothelial cells, platelets and erythrocytes. Int. J. Mol. Sci. 2:1–5, 2020. https://doi.org/10.3390/ijms21145168.
Article
Google Scholar
Gupta, A. K., M. B. Joshi, M. Philippova, P. Erne, P. Hasler, S. Hahn, and T. J. Resink. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 584(14):3193–3197, 2010.
Article
Google Scholar
Hamming, I., W. Timens, M. L. C. Bulthuis, A. T. Lely, G. J. Navis, and H. van Goor. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J. Pathol. 203(2):631–637, 2004. https://doi.org/10.1002/path.1570.
Article
Google Scholar
Hottz, E. D., I. G. Azevedo-Quintanilha, L. Palhinha, L. Teixeira, E. A. Barreto, C. R. R. Pão, C. Righy, S. Franco, T. M. L. Souza, P. Kurtz, et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 136(11):1330–1341, 2020. https://doi.org/10.1182/blood.2020007252.
Article
Google Scholar
Huang, S., C. Shen, C. Xia, X. Huang, Y. Fu, and L. Tian. A retrospective study on the effects of convalescent plasma therapy in 24 patients diagnosed with COVID-19 pneumonia in February and March 2020 at 2 Centers in Wuhan, China. Med. Sci. Monit. 26:1–9, 2020. https://doi.org/10.12659/msm.928755.
Article
Google Scholar
Joyner, M. J., K. A. Bruno, S. A. Klassen, K. L. Kunze, P. W. Johnson, E. R. Lesser, C. C. Wiggins, J. W. Senefeld, A. M. Klompas, D. O. Hodge, et al. Safety update: COVID-19 convalescent plasma in 20,000 hospitalized patients. Mayo Clin. Proc. 95(9):1888–1897, 2020. https://doi.org/10.1016/j.mayocp.2020.06.028.
Article
Google Scholar
Kaplan, M. J., and M. Radic. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 189(6):2689–2695, 2012. https://doi.org/10.4049/jimmunol.1201719.
Article
Google Scholar
Kaser, A., G. Brandacher, W. Steurer, S. Kaser, F. A. Offner, H. Zoller, I. Theurl, W. Widder, C. Molnar, and O. Ludwiczek. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: role in inflammatory thrombocytosis. Blood J. Am. Soc. Hematol. 98(9):2720–2725, 2001.
Google Scholar
Kaushansky, K. Thrombopoietin: the primary regulator of platelet production. Blood. 86(2):419–431, 1995.
Kaushansky, K. The molecular mechanisms that control thrombopoiesis. J. Clin. Investig. 115(12):3339–3347, 2005.
Article
Google Scholar
Kojima, H., A. Shinagawa, S. Shimizu, H. Kanada, M. Hibi, T. Hirano, and T. Nagasawa. Role of phosphatidylinositol-3 kinase and its association with Gab1 in thrombopoietin-mediated up-regulation of platelet function. Exp. Hematol. 29(5):616–622, 2001. https://doi.org/10.1016/s0301-472x(01)00623-3.
Article
Google Scholar
Krarup, A., R. Wallis, J. S. Presanis, P. Gál, and R. B. Sim. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE 2(7):2007.
Article
Google Scholar
Kwon, S.-Y., E.-J. Kim, Y. S. Jung, J. S. Jang, and N.-S. Cho. Post-donation COVID-19 identification in blood donors. Vox Sang. 115(8):601–602, 2020. https://doi.org/10.1111/vox.12925.
Article
Google Scholar
Lang, J. P., X. Wang, F. A. Moura, H. K. Siddiqi, D. A. Morrow, and E. A. Bohula. A current review of COVID-19 for the cardiovascular specialist. Am. Heart J. 226:29–44, 2020. https://doi.org/10.1016/j.ahj.2020.04.025.
Article
Google Scholar
Li, L., W. Zhang, Y. Hu, X. Tong, S. Zheng, J. Yang, Y. Kong, L. Ren, Q. Wei, H. Mei, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA 324(5):460, 2020. https://doi.org/10.1001/jama.2020.10044.
Article
Google Scholar
Lippi, G., and E. J. Favaloro. D-dimer is associated with severity of coronavirus disease 2019: a pooled analysis. Thromb. Haemost. 120(5):876–878, 2020. https://doi.org/10.1055/s-0040-1709650.
Article
Google Scholar
Lippi, G., M. Plebani, and B. M. Henry. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin. Chim. Acta 506:145–148, 2020. https://doi.org/10.1016/j.cca.2020.03.022.
Article
Google Scholar
Liu, Z., J. Li, D. Chen, R. Gao, W. Zeng, S. Chen, Y. Huang, J. Huang, W. Long, M. Li, et al. Dynamic interleukin-6 level changes as a prognostic indicator in patients with COVID-19. Front. Pharmacol. 2020. https://doi.org/10.3389/fphar.2020.01093.
Article
Google Scholar
Llitjos, J.-F., M. Leclerc, C. Chochois, J.-M. Monsallier, M. Ramakers, M. Auvray, and K. Merouani. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J. Thromb. Haemost. 18(7):1743–1746, 2020. https://doi.org/10.1111/jth.14869.
Article
Google Scholar
Lo, M. W., C. Kemper, and T. M. Woodruff. COVID-19: complement, coagulation, and collateral damage. J. Immunol. 205(6):1488–1495, 2020.
Article
Google Scholar
Mackman, N. The role of tissue factor and factor VIIa in hemostasis. Anesth. Analg. 108(5):1447, 2009.
Article
Google Scholar
Magro, C., J. J. Mulvey, D. Berlin, G. Nuovo, S. Salvatore, J. Harp, A. Baxter-Stoltzfus, and J. Laurence. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl. Res. 220:1–13, 2020. https://doi.org/10.1016/j.trsl.2020.04.007.
Article
Google Scholar
Manne, B. K., F. Denorme, E. A. Middleton, I. Portier, J. W. Rowley, C. Stubben, A. C. Petrey, N. D. Tolley, L. Guo, M. Cody, et al. Platelet gene expression and function in patients with COVID-19. Blood 136(11):1317–1329, 2020. https://doi.org/10.1182/blood.2020007214.
Article
Google Scholar
Marano, G., S. Vaglio, S. Pupella, G. Facco, L. Catalano, G. M. Liumbruno, and G. Grazzini. Convalescent plasma: new evidence for an old therapeutic tool? Blood Transfus. 14(2):152–157, 2016. https://doi.org/10.2450/2015.0131-15.
Article
Google Scholar
Marceau, F., and T. E. Hugli. Effect of C3a and C5a anaphylatoxins on guinea-pig isolated blood vessels. J. Pharmacol. Exp. Ther. 230(3):749–754, 1984.
Google Scholar
Mastellos, D. C., B. G. P. da Silva, B. A. Fonseca, N. P. Fonseca, M. Auxiliadora-Martins, S. Mastaglio, A. Ruggeri, M. Sironi, P. Radermacher, and A. Chrysanthopoulou. Complement C3 vs C5 inhibition in severe COVID-19: early clinical findings reveal differential biological efficacy. Clin. Immunol. 220:2020.
Article
Google Scholar
Mazzoni, A., L. Salvati, L. Maggi, M. Capone, A. Vanni, M. Spinicci, J. Mencarini, R. Caporale, B. Peruzzi, A. Antonelli, et al. Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J. Clin. Investig. 130(9):4694–4703, 2020. https://doi.org/10.1172/JCI138554.
Article
Google Scholar
Monteil, V., H. Kwon, P. Prado, A. Hagelkrüys, R. A. Wimmer, M. Stahl, A. Leopoldi, E. Garreta, P. C. del Hurtado, F. Prosper, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181(4):905–913, 2020. https://doi.org/10.1016/j.cell.2020.04.004.
Article
Google Scholar
Mycroft-West, C. J., D. Su, I. Pagani, T. R. Rudd, S. Elli, S. E. Guimond, G. Miller, M. C. Z. Meneghetti, H. B. Nader, Y. Li, et al. Heparin inhibits cellular invasion by SARS-CoV: structural dependence of the interaction of the surface protein (spike) S receptor binding domain with heparin. BioRxiv 2020. https://doi.org/10.1101/2020.04.28.066761.
Article
Google Scholar
Paola Canzano, Marta Brambilla, Benedetta Porro, Nicola Cosentino, Elena Tortorici, Stefano Vicini, Paolo Poggio, Andrea Cascella, Martino F. Pengo, Fabrizio Veglia, et al. Platelet and endothelial activation as potential mechanisms behind the thrombotic complications of COVID-19 patients. JACC. 6(3):202–218, 2021. https://doi.org/10.1016/j.jacbts.2020.12.009.
Article
Google Scholar
Paranjpe, I., V. Fuster, A. Lala, A. J. Russak, B. S. Glicksberg, M. A. Levin, A. W. Charney, J. Narula, Z. A. Fayad, E. Bagiella, S. Zhao, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients With COVID-19. J. Am. Coll. Cardiol. 2020. https://doi.org/10.1016/j.jacc.2020.05.001.
Article
Google Scholar
Patel, P., and U. P. Naik. Platelet MAPKs: a 20 + year history: what do we really know? J. Thromb. Haemost. 18(9):2087–2102, 2020. https://doi.org/10.1111/jth.14967.
Article
Google Scholar
Peerschke, E. I. B., W. Yin, S. E. Grigg, and B. Ghebrehiwet. Blood platelets activate the classical pathway of human complement. J. Thromb. Haemost. 4(9):2035–2042, 2006.
Article
Google Scholar
Pinho, A. C. AstraZeneca’s COVID-19 vaccine: EMA finds possible link to very rare cases of unusual blood clots with low platelets. European Medicines Agency. https://www.ema.europa.eu/en/news/astrazenecas-covid-19-vaccine-ema-finds-possible-link-very-rare-cases-unusual-blood-clots-low-blood 2021. Accessed 7 April 2021.
Radomski, M. W., R. M. Palmer, and S. Moncada. An l-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc. Natl. Acad. Sci. USA 87(13):5193–5197, 1990.
Article
Google Scholar
Ranganathan, S., and R. N. Iyer. Convalescent plasma: is it useful for treating SARS Co-V2 infection? Indian J. Med. Microbiol. 38(3):252–260, 2020. https://doi.org/10.4103/ijmm.IJMM_20_358.
Article
Google Scholar
Rapkiewicz, A. V., X. Mai, S. E. Carsons, S. Pittaluga, D. E. Kleiner, J. S. Berger, S. Thomas, N. M. Adler, D. M. Charytan, B. Gasmi, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series. EClinicalMedicine. 24:2020. https://doi.org/10.1016/j.eclinm.2020.100434.
Article
Google Scholar
Reid, K. B., and R. R. Porter. The proteolytic activation systems of complement. Annu. Rev. Biochem. 50(1):433–464, 1981.
Article
Google Scholar
MHRA issues new advice, concluding a possible link between COVID-19 Vaccine AstraZeneca and extremely rare, unlikely to occur blood clots. Medicines and Healthcare products Regulatory Agency. 2021. https://www.gov.uk/government/news/mhra-issues-new-advice-concluding-a-possible-link-between-covid-19-vaccine-astrazeneca-and-extremely-rare-unlikely-to-occur-blood-clots Accessed April 7, 2021.
Updated Information for Blood Establishments Regarding the COVID-19 Pandemic and Blood Donation. Food and Drug Administration. 2021. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/updated-information-blood-establishments-regarding-covid-19-pandemic-and-blood-donation. Accessed April 7, 2021.
Richardson, S., J. S. Hirsch, M. Narasimhan, J. M. Crawford, T. McGinn, K. W. Davidson, D. P. Barnaby, L. B. Becker, J. D. Chelico, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 323(20):2052, 2020. https://doi.org/10.1001/jama.2020.6775.
Article
Google Scholar
Risitano, A. M., D. C. Mastellos, M. Huber-Lang, D. Yancopoulou, C. Garlanda, F. Ciceri, and J. D. Lambris. Complement as a target in COVID-19? Nat. Rev. Immunol. 20(6):343–344, 2020.
Article
Google Scholar
Robbiani, D. F., C. Gaebler, F. Muecksch, J. C. Lorenzi, Z. Wang, A. Cho, M. Agudelo, C. O. Barnes, A. Gazumyan, and S. Finkin. Convergent antibody responses to SARS-CoV-2 infection in convalescent individuals. Biorxiv 20:1–2, 2020.
Google Scholar
Roncati, L., G. Ligabue, V. Nasillo, B. Lusenti, W. Gennari, L. Fabbiani, C. Malagoli, G. Gallo, S. Giovanella, M. Lupi, et al. A proof of evidence supporting abnormal immunothrombosis in severe COVID-19: naked megakaryocyte nuclei increase in the bone marrow and lungs of critically ill patients. Platelets 31(8):1085–1089, 2020. https://doi.org/10.1080/09537104.2020.1810224.
Article
Google Scholar
Seidel, M., H. Billert, and M. Kurpisz. Regulation of eNOS expression in HCAEC cell line treated with opioids and proinflammatory cytokines. Kardiol. Polska 64(2):153–158, 2006; (discussion 159-160).
Google Scholar
Shen, C., Z. Wang, F. Zhao, Y. Yang, J. Li, J. Yuan, F. Wang, D. Li, M. Yang, L. Xing, et al. Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA 323(16):1582, 2020. https://doi.org/10.1001/jama.2020.4783.
Article
Google Scholar
Shi, R., C. Shan, X. Duan, Z. Chen, P. Liu, J. Song, T. Song, X. Bi, C. Han, and L. Wu. A human neutralizing antibody targets the receptor binding site of SARS-CoV-2. Nature 20:1–8, 2020.
Google Scholar
Siddiqi, H. K., and M. R. Mehra. COVID-19 illness in native and immunosuppressed states: a clinical–therapeutic staging proposal. J. Heart Lung Transpl. 39(5):405–407, 2020. https://doi.org/10.1016/j.healun.2020.03.012.
Article
Google Scholar
Siegel-Axel, D. I., and M. Gawaz. Platelets and endothelial cells. Semin. Thromb. Hemost. 33(2):128–135, 2007. https://doi.org/10.1055/s-2007-969025.
Article
Google Scholar
Skendros, P., A. Mitsios, A. Chrysanthopoulou, D. C. Mastellos, S. Metallidis, P. Rafailidis, M. Ntinopoulou, E. Sertaridou, V. Tsironidou, and C. Tsigalou. Complement and tissue factor–enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Investig. 130(11):6151–6157, 2020.
Article
Google Scholar
Stainsby, D. Guide to the preparation, use and quality assurance of blood components. J. Clin. Pathol. 51(10):792, 1998.
Google Scholar
Stakos, D. A., K. Kambas, T. Konstantinidis, I. Mitroulis, E. Apostolidou, S. Arelaki, V. Tsironidou, A. Giatromanolaki, P. Skendros, and S. Konstantinides. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur. Heart J. 36(22):1405–1414, 2015.
Article
Google Scholar
Sungaran, R., B. Markovic, and B. H. Chong. Localization and regulation of thrombopoietin mRNA expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood J. Am. Soc. Hematol. 89(1):101–107, 1997.
Google Scholar
Suwanwongse, K., and N. Shabarek. Bilateral popliteal vein thrombosis, acute pulmonary embolism and mild COVID-19. Cureus 2020. https://doi.org/10.7759/cureus.11213.
Article
Google Scholar
Tandon, R., J. S. Sharp, F. Zhang, V. H. Pomin, N. M. Ashpole, D. Mitra, M. G. McCandless, W. Jin, H. Liu, P. Sharma, et al. Effective inhibition of SARS-CoV-2 entry by heparin and enoxaparin derivatives. J. Virol. 2021. https://doi.org/10.1128/jvi.01987-20.
Article
Google Scholar
Tang, N., H. Bai, X. Chen, J. Gong, D. Li, and Z. Sun. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 18(5):1094–1099, 2020. https://doi.org/10.1111/jth.14817.
Article
Google Scholar
Tang, N., D. Li, X. Wang, and Z. Sun. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 18(4):844–847, 2020. https://doi.org/10.1111/jth.14768.
Article
Google Scholar
Thakkar, N., T. Yadavalli, D. Jaishankar, and D. Shukla. Emerging roles of heparanase in viral pathogenesis. Pathogens 6(3):43, 2017. https://doi.org/10.3390/pathogens6030043.
Article
Google Scholar
Valdivia-Mazeyra, M. F., C. Salas, J. M. Nieves-Alonso, L. Martín-Fragueiro, C. Bárcena, P. Muñoz-Hernández, K. Villar-Zarra, J. Martín-López, F. Ramasco-Rueda, J. Fraga, et al. Increased number of pulmonary megakaryocytes in COVID-19 patients with diffuse alveolar damage: an autopsy study with clinical correlation and review of the literature. Virchows Arch. 11:1–10, 2020. https://doi.org/10.1007/s00428-020-02926-1.
Article
Google Scholar
Varga, Z., A. J. Flammer, P. Steiger, M. Haberecker, R. Andermatt, A. Zinkernagel, M. R. Mehra, F. Scholkmann, R. Schüpbach, F. Ruschitzka, et al. Electron microscopy of SARS-CoV-2: a challenging task: authors’ reply. Lancet (London, England). 395(10238):2020. https://doi.org/10.1016/S0140-6736(20)31185-5.
Article
Google Scholar
Varga, Z., A. J. Flammer, P. Steiger, M. Haberecker, R. Andermatt, A. S. Zinkernagel, M. R. Mehra, R. A. Schuepbach, F. Ruschitzka, and H. Moch. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395(10234):1417–1418, 2020. https://doi.org/10.1016/S0140-6736(20)30937-5.
Article
Google Scholar
Vlaar, A. P., S. de Bruin, M. Busch, S. A. Timmermans, I. E. van Zeggeren, R. Koning, L. Ter Horst, E. B. Bulle, F. E. van Baarle, and M. C. van de Poll. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol. 2(12):e764–e773, 2020.
Article
Google Scholar
von Meijenfeldt, F. A., S. Havervall, J. Adelmeijer, A. Lundström, M. Magnusson, N. Mackman, C. Thalin, and T. Lisman. Sustained prothrombotic changes in COVID-19 patients 4 months after hospital discharge. Blood Adv. 5(3):756–759, 2021. https://doi.org/10.1182/bloodadvances.2020003968.
Article
Google Scholar
Wang, J., M. Jiang, X. Chen, and L. J. Montaner. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 2020. https://doi.org/10.1002/jlb.3covr0520-272r.
Article
Google Scholar
Wiedmer, T., C.T. Esmon, P.J. Sims. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood. 68(4):875–880, 1986.
Yang, X., Q. Yang, Y. Wang, Y. Wu, J. Xu, Y. Yu, and Y. Shang. Thrombocytopenia and its association with mortality in patients with COVID-19. J. Thromb. Haemost. 18(6):1469–1472, 2020.
Article
Google Scholar
Yaqinuddin, A., and J. Kashir. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med. Hypotheses 143:2020. https://doi.org/10.1016/j.mehy.2020.109906.
Article
Google Scholar
Yau, J. W., H. Teoh, and S. Verma. Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 15(1):130, 2015. https://doi.org/10.1186/s12872-015-0124-z.
Article
Google Scholar
Ye, J., B. Zhang, J. Xu, Q. Chang, M. A. McNutt, C. Korteweg, E. Gong, and J. Gu. Molecular pathology in the lungs of severe acute respiratory syndrome patients. Am. J. Pathol. 170(2):538–545, 2007. https://doi.org/10.2353/ajpath.2007.060469.
Article
Google Scholar
Zaid, Y., F. Puhm, I. Allaeys, A. Naya, M. Oudghiri, L. Khalki, Y. Limami, N. Zaid, K. Sadki, R. Ben El Haj, et al. Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ. Res. 127(11):1404–1418, 2020. https://doi.org/10.1161/circresaha.120.317703.
Article
Google Scholar
Zeng, L., S. Xia, W. Yuan, K. Yan, F. Xiao, J. Shao, and W. Zhou. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr. 174(7):722, 2020. https://doi.org/10.1001/jamapediatrics.2020.0878.
Article
Google Scholar
Zhang, J., J. M. Patel, Y. D. Li, and E. R. Block. Proinflammatory cytokines downregulate gene expression and activity of constitutive nitric oxide synthase in porcine pulmonary artery endothelial cells. Res. Commun. Mol. Pathol. Pharmacol. 96(1):71–87, 1997.
Google Scholar
Zhang, S., Y. Liu, X. Wang, L. Yang, H. Li, Y. Wang, M. Liu, X. Zhao, Y. Xie, Y. Yang, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 13(1):120, 2020. https://doi.org/10.1186/s13045-020-00954-7.
Zhao, X., K. Wang, P. Zuo, Y. Liu, M. Zhang, S. Xie, H. Zhang, X. Chen, and C. Liu. Early decrease in blood platelet count is associated with poor prognosis in COVID-19 patients—indications for predictive, preventive, and personalized medical approach. EPMA J. 11:139–145, 2020.
Article
Google Scholar
Zuo, Y., M. Zuo, S. Yalavarthi, K. Gockman, J. A. Madison, H. Shi, W. Woodard, S. P. Lezak, N. L. Lugogo, J. S. Knight, et al. Neutrophil extracellular traps and thrombosis in COVID-19. J. Thromb. Thrombolysis 51(2):446–453, 2021. https://doi.org/10.1007/s11239-020-02324-z.
Article
Google Scholar