Baldwin, A. D., and K. L. Kiick. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug. Chem. 22:1946–1953, 2011.
Article
Google Scholar
Barrientos, G., N. Freitag, I. Tirado-González, L. Unverdorben, U. Jeschke, V. L. J. L. Thijssen, and S. M. Blois. Involvement of galectin-1 in reproduction: past, present and future. Hum. Reprod. Update 20:175–193, 2014.
Article
Google Scholar
Camby, I., M. Le Mercier, F. Lefranc, and R. Kiss. Galectin-1: a small protein with major functions. Glycobiology 16:137R–157R, 2006.
Article
Google Scholar
Cedeno-Laurent, F., S. R. Barthel, M. J. Opperman, D. M. Lee, R. A. Clark, and C. J. Dimitroff. Development of a nascent galectin-1 chimeric molecule for studying the role of leukocyte galectin-1 ligands and immune disease modulation. J. Immunol. 185:4659–4672, 2010.
Article
Google Scholar
Chien, C.-T. H., M.-R. Ho, C.-H. Lin, and S.-T. D. Hsu. Lactose binding induces opposing dynamics changes in human galectins revealed by NMR-based hydrogen–deuterium exchange. Molecules 22(8):1357, 2017.
Article
Google Scholar
Earl, L. A., S. Bi, and L. G. Baum. Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 21:6–12, 2011.
Article
Google Scholar
Elbert, D. L., and J. A. Hubbell. Conjugate addition reactions combined with free-radical cross-linking for the design of materials for tissue engineering. Biomacromolecules 2:430–441, 2001.
Article
Google Scholar
Farhadi, S. A., M. M. Fettis, R. Liu, and G. A. Hudalla. A synthetic tetramer of galectin-1 and galectin-3 amplifies pro-apoptotic signaling by integrating the activity of both galectins. Front. Chem. 7:898, 2020.
Article
Google Scholar
Farhadi, S. A., and G. A. Hudalla. Engineering galectin–glycan interactions for immunotherapy and immunomodulation. Exp. Biol. Med. 241:1074–1083, 2016.
Article
Google Scholar
Fettis, M. M., and G. A. Hudalla. Engineering reactive oxygen species-resistant galectin-1 dimers with enhanced lectin activity. Bioconjug. Chem. 29:2489–2496, 2018.
Article
Google Scholar
Fontaine, S. D., R. Reid, L. Robinson, G. W. Ashley, and D. V. Santi. Long-term stabilization of maleimide–thiol conjugates. Bioconjug. Chem. 26:145–152, 2015.
Article
Google Scholar
Guardia, C. M., J. J. Caramelo, M. Trujillo, S. P. Méndez-Huergo, R. Radi, D. A. Estrin, and G. A. Rabinovich. Structural basis of redox-dependent modulation of galectin-1 dynamics and function. Glycobiology 24:428–441, 2014.
Article
Google Scholar
Hong, L., Z. Wang, X. Wei, J. Shi, and C. Li. Antibodies against polyethylene glycol in human blood: a literature review. J. Pharmacol. Toxicol. Methods 102:2020.
Article
Google Scholar
Huang, W., X. Wu, X. Gao, Y. Yu, H. Lei, Z. Zhu, Y. Shi, Y. Chen, M. Qin, W. Wang, and Y. Cao. Maleimide–thiol adducts stabilized through stretching. Nat. Chem. 11:310–319, 2019.
Article
Google Scholar
Hudalla, G. A., T. S. Eng, and W. L. Murphy. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks. Biomacromolecules 9:842–849, 2008.
Article
Google Scholar
Ito, K., K. Stannard, E. Gabutero, A. M. Clark, S.-Y. Neo, S. Onturk, H. Blanchard, and S. J. Ralph. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev. 31:763–778, 2012.
Article
Google Scholar
Ko, J. H., and H. D. Maynard. A guide to maximizing the therapeutic potential of protein–polymer conjugates by rational design. Chem. Soc. Rev. 47:8998–9014, 2018.
Article
Google Scholar
Koniev, O., and A. Wagner. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44:5495–5551, 2015.
Article
Google Scholar
Lorenzo, M. M., C. G. Decker, M. U. Kahveci, S. J. Paluck, and H. D. Maynard. Homodimeric protein-polymer conjugates via the tetrazine-trans-cyclooctene ligation. Macromolecules 49:30–37, 2016.
Article
Google Scholar
Miura, T., M. Takahashi, H. Horie, H. Kurushima, D. Tsuchimoto, K. Sakumi, and Y. Nakabeppu. Galectin-1β, a natural monomeric form of galectin-1 lacking its six amino-terminal residues promotes axonal regeneration but not cell death. Cell Death Differ. 11:1076–1083, 2004.
Article
Google Scholar
Nair, D. P., M. Podgórski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli, and C. N. Bowman. The thiol-michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem. Mater. 26:724–744, 2014.
Article
Google Scholar
Nesmelova, I. V., E. Ermakova, V. A. Daragan, M. Pang, M. Menéndez, L. Lagartera, D. Solís, L. G. Baum, and K. H. Mayo. Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity. J Mol Biol 397:1209–1230, 2010.
Article
Google Scholar
Nishi, N., A. Abe, J. Iwaki, H. Yoshida, A. Itoh, H. Shoji, S. Kamitori, J. Hirabayashi, and T. Nakamura. Functional and structural bases of a cysteine-less mutant as a long-lasting substitute for galectin-1. Glycobiology 18:1065–1073, 2008.
Article
Google Scholar
Nishi, N., A. Itoh, A. Fujiyama, N. Yoshida, S. Araya, M. Hirashima, H. Shoji, and T. Nakamura. Development of highly stable galectins: truncation of the linker peptide confers protease-resistance on tandem-repeat type galectins. FEBS Lett. 579:2058–2064, 2005.
Article
Google Scholar
Odom, O. W., W. Kudlicki, G. Kramer, and B. Hardesty. An effect of polyethylene glycol 8000 on protein mobility in sodium dodecyl sulfate–polyacrylamide gel electrophoresis and a method for eliminating this effect. Anal. Biochem. 245:249–252, 1997.
Article
Google Scholar
Pace, K. E., H. P. Hahn, and L. G. Baum. Preparation of recombinant human galectin-1 and use in T cell death assays. Methods Enzymol. 363:499–518, 2003.
Article
Google Scholar
Pelegri-O’Day, E. M., E.-W. Lin, and H. D. Maynard. Therapeutic protein–polymer conjugates: advancing beyond PEGylation. J. Am. Chem. Soc. 136:14323–14332, 2014.
Article
Google Scholar
Ravasco, J. M. J. M., H. Faustino, A. Trindade, and P. M. P. Gois. Bioconjugation with maleimides: a useful tool for chemical biology. Chem. Eur. J. 25:43–59, 2019.
Article
Google Scholar
Schellekens, H., W. E. Hennink, and V. Brinks. The immunogenicity of polyethylene glycol: facts and fiction. Pharm. Res. 30:1729–1734, 2013.
Article
Google Scholar
Shen, B.-Q., K. Xu, L. Liu, H. Raab, S. Bhakta, M. Kenrick, K. L. Parsons-Reponte, J. Tien, S.-F. Yu, E. Mai, D. Li, J. Tibbitts, J. Baudys, O. M. Saad, S. J. Scales, P. J. McDonald, P. E. Hass, C. Eigenbrot, T. Nguyen, W. A. Solis, R. N. Fuji, K. M. Flagella, D. Patel, S. D. Spencer, L. A. Khawli, A. Ebens, W. L. Wong, R. Vandlen, S. Kaur, M. X. Sliwkowski, R. H. Scheller, P. Polakis, and J. R. Junutula. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30:184–189, 2012.
Article
Google Scholar
Sundblad, V., L. G. Morosi, J. R. Geffner, and G. A. Rabinovich. Galectin-1: a jack-of-all-trades in the resolution of acute and chronic inflammation. J. Immunol. 199:3721–3730, 2017.
Article
Google Scholar
Tao, L., C. S. Kaddis, R. R. O. Loo, G. N. Grover, J. A. Loo, and H. D. Maynard. Synthetic approach to homodimeric protein-polymer conjugates. Chem. Commun. 16:2148–2150, 2009.
Article
Google Scholar
Thijssen, V. L., and A. W. Griffioen. Galectin-1 and -9 in angiogenesis: a sweet couple. Glycobiology 24:915–920, 2014.
Article
Google Scholar
van der Leij, J., A. van den Berg, G. Harms, H. Eschbach, H. Vos, P. Zwiers, R. van Weeghel, H. Groen, S. Poppema, and L. Visser. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol. Immunol. 44:506–513, 2007.
Article
Google Scholar
White, C. J., and J. W. Bode. PEGylation and dimerization of expressed proteins under near equimolar conditions with potassium 2-pyridyl acyltrifluoroborates. ACS Cent. Sci. 4:197–206, 2018.
Article
Google Scholar
Zhang, B., P. Chakma, M. P. Shulman, J. Ke, Z. A. Digby, and D. Konkolewicz. Probing the mechanism of thermally driven thiol-michael dynamic covalent chemistry. Org. Biomol. Chem. 16:2725–2734, 2001.
Article
Google Scholar
Zheng, C. Y., G. Ma, and Z. Su. Native PAGE eliminates the problem of PEG–SDS interaction in SDS-PAGE and provides an alternative to HPLC in characterization of protein PEGylation. Electrophoresis 28:2801–2807, 2007.
Article
Google Scholar