Afzalipour, R., S. Khoei, S. Khoee, S. Shirvalilou, N. Jamali Raoufi, M. Motevalian, and M. R. Karimi. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater. Sci. Eng. 5(11):6000–6011, 2019.
Article
Google Scholar
Afzalipour, R., S. Khoei, S. Khoee, S. Shirvalilou, N. J. Raoufi, M. Motevalian, and M. Y. Karimi. Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. Nanomedicine 31:2021.
Article
Google Scholar
Asadi, L., S. Shirvalilou, S. Khoee, and S. Khoei. Cytotoxic effect of 5-fluorouracil-loaded polymer-coated magnetite nanographene oxide combined with radiofrequency. Anti-Cancer Agents Med. Chem. 18(8):1148–1155, 2018.
Article
Google Scholar
Asayesh, T., V. Changizi, and N. Eyvazzadeh. Assessment of cytotoxic damage induced by irradiation combined with hyperthermia and Gemcitabine on cultured glioblastoma spheroid cells. Radiat. Phys. Chem. 120:44–48, 2016.
Article
Google Scholar
Bao, S., Q. Wu, R. E. McLendon, Y. Hao, Q. Shi, A. B. Hjelmeland, M. W. Dewhirst, D. D. Bigner, and J. N. Rich. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760, 2006.
Article
Google Scholar
Bayart, E., F. Pouzoulet, L. Calmels, J. Dadoun, F. Allot, J. Plagnard, J. L. Ravanat, A. Bridier, M. Denoziere, J. Bourhis, and E. Deutsch. Enhancement of IUdR radiosensitization by low-energy photons results from increased and persistent DNA damage. PLoS ONE 12(1):2017.
Article
Google Scholar
Brandes, A. A., A. Tosoni, E. Franceschi, M. Reni, G. Gatta, and C. Vecht. Glioblastoma in adults. Crit. Rev. Oncol./Hematol. 67(2):139–152, 2008.
Article
Google Scholar
Bree, C. V., N. A. Franken, P. J. Bakker, L. J. Klomp-Tukker, G. W. Barendsen, and J. B. A. Kipp. Hyperthermia and incorporation of halogenated pyrimidines: radiosensitization in cultured rodent and humor tumor cells. Int. J. Radiat. Oncol. Biol. Phys. 39:489–496, 1997.
Article
Google Scholar
Cassim, S., A. Giustini, A. Petryk, R. Strawbridge, and P. Hoopes. In: Iron oxide nanoparticle hyperthermia and radiation cancer treatment, SPIE BiOS: Biomedical Optics, International Society for Optics and Photonics, pp. 71810O–71810O-8, 2009.
Davis, M. E. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20(5):S2–S8, 2016.
Article
Google Scholar
Dilnawaz, F., A. Singh, C. Mohanty, and S. K. Sahoo. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706, 2010.
Article
Google Scholar
Du, J., W.-L. Lu, X. Ying, Y. Liu, P. Du, W. Tian, Y. Men, J. Guo, Y. Zhang, and R.-J. Li. Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood− brain barrier and survival of brain tumor-bearing animals. Mol. Pharm. 6(3):905–917, 2009.
Article
Google Scholar
Dubey, N., R. Varshney, J. Shukla, A. Ganeshpurkar, P. P. Hazari, G. P. Bandopadhaya, A. K. Mishra, and P. Trivedi. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 19(3):132–142, 2012.
Article
Google Scholar
Esmaelbeygi, E., S. Khoei, S. Khoee, and S. Eynali. Role of iron oxide core of polymeric nanoparticles in the thermosensitivity of colon cancer cell line HT-29. Int. J. Hyperthermia 31(5):489–497, 2015.
Article
Google Scholar
Feng, Q.-W., Z.-G. Cui, Y.-J. Jin, L. Sun, M.-L. Li, S. A. Zakki, D.-J. Zhou, and H. Inadera. Protective effect of dihydromyricetin on hyperthermia-induced apoptosis in human myelomonocytic lymphoma cells. Apoptosis 24(3):290–300, 2019.
Article
Google Scholar
Fu, Y., and W. J. Kao. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7(4):429–444, 2010.
Article
Google Scholar
Hauser, A. K., M. I. Mitov, E. F. Daley, R. C. McGarry, K. W. Anderson, and J. Z. Hilt. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105:127–135, 2016.
Article
Google Scholar
Hegi, M. E., A.-C. Diserens, T. Gorlia, M.-F. Hamou, N. De Tribolet, M. Weller, J. M. Kros, J. A. Hainfellner, W. Mason, and L. Mariani. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352(10):997–1003, 2005.
Article
Google Scholar
Iliakis, G., and S. Kurtzman. Keynote address: application of non-hypoxic cell sensitizers in radiobiology and radiotherapy: rationale and future prospects. Int. J. Radiat. Oncol. Biol. Phys. 16(5):1235–1241, 1989.
Article
Google Scholar
Jordan, A., P. Wust, R. Scholz, B. Tesche, H. Fähling, T. Mitrovics, T. Vogl, J. Cervos-Navarro, and R. Felix. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperthermia 12(6):705–722, 1996.
Article
Google Scholar
Kargar, S., S. Khoei, S. Khoee, S. Shirvalilou, and S. R. Mahdavi. Evaluation of the combined effect of NIR laser and ionizing radiation on cellular damages induced by IUdR-loaded PLGA-coated Nano-graphene oxide. Photodiagn. Photodyn. Ther. 21:91–97, 2018.
Article
Google Scholar
Kato, T. A., A. Tsuda, M. Uesaka, A. Fujimori, T. Kamada, H. Tsujii, and R. Okayasu. In vitro characterization of cells derived from chordoma cell line U-CH1 following treatment with X-rays, heavy ions and chemotherapeutic drugs. Radiat. Oncol. 6(1):1–9, 2011.
Article
Google Scholar
Khoei, S., S. Delfan, A. Neshasteh-Riz, and S. R. Mahdavi. Evaluation of the combined effect of 2ME2 and 60Co on the inducement of DNA damage by IUdR in a spheroid model of the U87MG glioblastoma cancer cell line using alkaline comet assay. Cell J. 13(2):83, 2011.
Google Scholar
Kim, W., H. Youn, S. Lee, E. Kim, D. Kim, J. S. Lee, J.-M. Lee, and B. Youn. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp. Mol. Med. 50(1):2018.
Article
Google Scholar
Kutikov, A. B., and J. Song. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater. Sci. Eng. 1(7):463–480, 2015.
Article
Google Scholar
Laurent, S., S. Dutz, U. O. Häfeli, and M. Mahmoudi. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166(1):8–23, 2011.
Article
Google Scholar
Man, J., J. D. Shoemake, T. Ma, A. E. Rizzo, A. R. Godley, Q. Wu, A. M. Mohammadi, S. Bao, J. N. Rich, and S. Y. Jennifer. Hyperthermia sensitizes glioma stem-like cells to radiation by inhibiting AKT signaling. Cancer Res. 75(8):1760–1769, 2015.
Article
Google Scholar
Mohammadi, S., S. Khoei, and S. R. Mahdavi. The combination effect of poly (lactic-co-glycolic acid) coated iron oxide nanoparticles as 5-fluorouracil carrier and X-ray on the level of DNA damages in the DU 145 human prostate carcinoma cell line. J. Bionanosci. 6(1):23–27, 2012.
Article
Google Scholar
Nazli, C., T. I. Ergenc, Y. Yar, H. Y. Acar, and S. Kizilel. RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells. Int. J. Nanomed. 7:1903–1920, 2012.
Google Scholar
Neshasteh-Riz, A., W. Angerson, J. Reeves, G. Smith, R. Rampling, and R. Mairs. Incorporation of iododeoxyuridine in multicellular glioma spheroids: implications for DNA-targeted radiotherapy using Auger electron emitters. Br. J. Cancer 75(4):493, 1997.
Article
Google Scholar
Oghabian, M. A., M. Jeddi-Tehrani, A. Zolfaghari, F. Shamsipour, S. Khoei, and S. Amanpour. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J. Nanosci. Nanotechnol. 11(6):5340–5344, 2011.
Article
Google Scholar
Rajaee, Z., S. Khoei, S. R. Mahdavi, M. Ebrahimi, S. Shirvalilou, and A. Mahdavian. Evaluation of the effect of hyperthermia and electron radiation on prostate cancer stem cells. Radiat. Environ. Biophys. 57(2):133–142, 2018.
Article
Google Scholar
Rajaee, Z., S. Khoei, A. Mahdavian, S. Shirvalilou, S. R. Mahdavi, and M. Ebrahimi. Radio-thermo-sensitivity induced by gold magnetic nanoparticles in the monolayer culture of human prostate carcinoma cell line DU145. Anti-Cancer Agents Med. Chem. 20(3):315–324, 2020.
Article
Google Scholar
Rezaie, P., S. Khoei, S. Khoee, S. Shirvalilou, and S. R. Mahdavi. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line. Int. J. Radiat. Biol. 94(11):1027–1037, 2018.
Article
Google Scholar
Sanz, B., M. P. Calatayud, T. E. Torres, M. L. Fanarraga, M. R. Ibarra, and G. F. Goya. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials 114:62–70, 2017.
Article
Google Scholar
Shand, N., F. Weber, L. Mariani, M. Bernstein, A. Gianella-Borradori, Z. A. Long, A. Sorensen, and N. Barbier. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. Hum. Gene Ther. 10(14):2325–2335, 1999.
Article
Google Scholar
Shirvalilou, S., S. Khoei, A. J. Esfahani, M. Kamali, M. Shirvaliloo, R. Sheervalilou, and P. Mirzaghavami. Magnetic hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review. J. Neuro-Oncol. 1–10, 2021.
Shirvalilou, S., S. Khoei, S. Khoee, N. J. Raoufi, M. R. Karimi, and A. Shakeri-Zadeh. Development of a magnetic nano-graphene oxide Carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations. Chemico-Biol. Interact. 295:97–108, 2018.
Article
Google Scholar
Stupp, R., W. P. Mason, M. J. Van Den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, and U. Bogdahn. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10):987–996, 2005.
Article
Google Scholar
Sun, L., Z.-G. Cui, S. A. Zakki, Q.-W. Feng, M.-L. Li, and H. Inadera. Mechanistic study of nonivamide enhancement of hyperthermia-induced apoptosis in U937 cells. Free Radic. Biol. Med. 120:147–159, 2018.
Article
Google Scholar
Taylor, U., S. Klein, S. Petersen, W. Kues, S. Barcikowski, and D. Rath. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry Part A 77(5):439–446, 2010.
Google Scholar
Ulery, B. D., L. S. Nair, and C. T. Laurencin. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B 49(12):832–864, 2011.
Article
Google Scholar
Van Tellingen, O., B. Yetkin-Arik, M. De Gooijer, P. Wesseling, T. Wurdinger, and H. de Vries. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updates 19:1–12, 2015.
Article
Google Scholar
Xu, H., and Y. Pan. Experimental evaluation on the heating efficiency of magnetoferritin nanoparticles in an alternating magnetic field. Nanomaterials 9(10):1457, 2019.
Article
Google Scholar
Yi, G.-Q., B. Gu, and L.-K. Chen. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumor Biol. 35(3):2445–2449, 2014.
Article
Google Scholar
Yuan, X., C. Fahlman, K. Tabassi, and J. A. Williams. Synthetic, implantable, biodegradable polymers for controlled release of radiosensitizers. Cancer Biother. Radiopharm. 14(3):177–186, 1999.
Article
Google Scholar
Zheng, S., X. Gao, X. Liu, T. Yu, T. Zheng, Y. Wang, and C. You. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo. Int. J. Nanomed. 11:2721, 2016.
Google Scholar