Skip to main content

Enhancement of Radio-Thermo-Sensitivity of 5-Iodo-2-Deoxyuridine-Loaded Polymeric-Coated Magnetic Nanoparticles Triggers Apoptosis in U87MG Human Glioblastoma Cancer Cell Line

Abstract

Introduction

With an emphasis on the radioresistant nature of glioblastoma cells, the aim of the present study was to evaluate the radio-thermo-sensitizing effects of PCL-PEG-coated Superparamagnetic iron oxide nanoparticles (SPIONs) as a carrier of 5-iodo-2-deoxyuridine (IUdR) in monolayer culture of U87MG human glioma cell line.

Methods

Following monolayer culture of U87MG cells, nanoparticle uptake was assessed using Prussian blue staining and ICP-OES method. The U87MG cells were treated with an appropriate concentration of free IUdR and PCL-PEG-coated SPIONs (MNPs) loaded with IUdR (IUdR/MNPs) for 24 h, subjected to hyperthermia (water bath and alternating magnetic field (AMF)) at 43 °C, and exposed to X-ray (2 Gy, 6 MV). The combined effects of hyperthermia with or without magnetic nanoparticles on radiosensitivity of the U87MG cells were evaluated using colony formation assay (CFA) and Flowcytometry.

Results

Prussian blue staining and ICP-OES showed that the nanoparticles were able to enter the cells. The results also indicated that IUdR/MNPs combined with X-ray radiation and hyperthermia significantly decreased the colony formation ability of monolayer cells (1.11, 1.41 fold) and increased the percentage of apoptotic (2.47, 4.1 fold) and necrotic cells (12.28, 29.34 fold), when compared to IUdR combined with X-ray and hyperthermia or IUdR/MNPs + X-ray. MTT results revealed that the presence of IUdR/MNPs significantly increased the toxicity of AMF hyperthermia compared to the water bath method.

Conclusions

Our study showed that SPIONs/PCL-PEG, as a carrier of IUdR, can enhance the cytotoxic effects of radiotherapy and hyperthermia and act as a radio-thermo-sensitizing agent.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Afzalipour, R., S. Khoei, S. Khoee, S. Shirvalilou, N. Jamali Raoufi, M. Motevalian, and M. R. Karimi. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas. ACS Biomater. Sci. Eng. 5(11):6000–6011, 2019.

    Article  Google Scholar 

  2. Afzalipour, R., S. Khoei, S. Khoee, S. Shirvalilou, N. J. Raoufi, M. Motevalian, and M. Y. Karimi. Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. Nanomedicine 31:2021.

    Article  Google Scholar 

  3. Asadi, L., S. Shirvalilou, S. Khoee, and S. Khoei. Cytotoxic effect of 5-fluorouracil-loaded polymer-coated magnetite nanographene oxide combined with radiofrequency. Anti-Cancer Agents Med. Chem. 18(8):1148–1155, 2018.

    Article  Google Scholar 

  4. Asayesh, T., V. Changizi, and N. Eyvazzadeh. Assessment of cytotoxic damage induced by irradiation combined with hyperthermia and Gemcitabine on cultured glioblastoma spheroid cells. Radiat. Phys. Chem. 120:44–48, 2016.

    Article  Google Scholar 

  5. Bao, S., Q. Wu, R. E. McLendon, Y. Hao, Q. Shi, A. B. Hjelmeland, M. W. Dewhirst, D. D. Bigner, and J. N. Rich. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760, 2006.

    Article  Google Scholar 

  6. Bayart, E., F. Pouzoulet, L. Calmels, J. Dadoun, F. Allot, J. Plagnard, J. L. Ravanat, A. Bridier, M. Denoziere, J. Bourhis, and E. Deutsch. Enhancement of IUdR radiosensitization by low-energy photons results from increased and persistent DNA damage. PLoS ONE 12(1):2017.

    Article  Google Scholar 

  7. Brandes, A. A., A. Tosoni, E. Franceschi, M. Reni, G. Gatta, and C. Vecht. Glioblastoma in adults. Crit. Rev. Oncol./Hematol. 67(2):139–152, 2008.

    Article  Google Scholar 

  8. Bree, C. V., N. A. Franken, P. J. Bakker, L. J. Klomp-Tukker, G. W. Barendsen, and J. B. A. Kipp. Hyperthermia and incorporation of halogenated pyrimidines: radiosensitization in cultured rodent and humor tumor cells. Int. J. Radiat. Oncol. Biol. Phys. 39:489–496, 1997.

    Article  Google Scholar 

  9. Cassim, S., A. Giustini, A. Petryk, R. Strawbridge, and P. Hoopes. In: Iron oxide nanoparticle hyperthermia and radiation cancer treatment, SPIE BiOS: Biomedical Optics, International Society for Optics and Photonics, pp. 71810O–71810O-8, 2009.

  10. Davis, M. E. Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20(5):S2–S8, 2016.

    Article  Google Scholar 

  11. Dilnawaz, F., A. Singh, C. Mohanty, and S. K. Sahoo. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31(13):3694–3706, 2010.

    Article  Google Scholar 

  12. Du, J., W.-L. Lu, X. Ying, Y. Liu, P. Du, W. Tian, Y. Men, J. Guo, Y. Zhang, and R.-J. Li. Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood− brain barrier and survival of brain tumor-bearing animals. Mol. Pharm. 6(3):905–917, 2009.

    Article  Google Scholar 

  13. Dubey, N., R. Varshney, J. Shukla, A. Ganeshpurkar, P. P. Hazari, G. P. Bandopadhaya, A. K. Mishra, and P. Trivedi. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 19(3):132–142, 2012.

    Article  Google Scholar 

  14. Esmaelbeygi, E., S. Khoei, S. Khoee, and S. Eynali. Role of iron oxide core of polymeric nanoparticles in the thermosensitivity of colon cancer cell line HT-29. Int. J. Hyperthermia 31(5):489–497, 2015.

    Article  Google Scholar 

  15. Feng, Q.-W., Z.-G. Cui, Y.-J. Jin, L. Sun, M.-L. Li, S. A. Zakki, D.-J. Zhou, and H. Inadera. Protective effect of dihydromyricetin on hyperthermia-induced apoptosis in human myelomonocytic lymphoma cells. Apoptosis 24(3):290–300, 2019.

    Article  Google Scholar 

  16. Fu, Y., and W. J. Kao. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7(4):429–444, 2010.

    Article  Google Scholar 

  17. Hauser, A. K., M. I. Mitov, E. F. Daley, R. C. McGarry, K. W. Anderson, and J. Z. Hilt. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105:127–135, 2016.

    Article  Google Scholar 

  18. Hegi, M. E., A.-C. Diserens, T. Gorlia, M.-F. Hamou, N. De Tribolet, M. Weller, J. M. Kros, J. A. Hainfellner, W. Mason, and L. Mariani. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352(10):997–1003, 2005.

    Article  Google Scholar 

  19. Iliakis, G., and S. Kurtzman. Keynote address: application of non-hypoxic cell sensitizers in radiobiology and radiotherapy: rationale and future prospects. Int. J. Radiat. Oncol. Biol. Phys. 16(5):1235–1241, 1989.

    Article  Google Scholar 

  20. Jordan, A., P. Wust, R. Scholz, B. Tesche, H. Fähling, T. Mitrovics, T. Vogl, J. Cervos-Navarro, and R. Felix. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperthermia 12(6):705–722, 1996.

    Article  Google Scholar 

  21. Kargar, S., S. Khoei, S. Khoee, S. Shirvalilou, and S. R. Mahdavi. Evaluation of the combined effect of NIR laser and ionizing radiation on cellular damages induced by IUdR-loaded PLGA-coated Nano-graphene oxide. Photodiagn. Photodyn. Ther. 21:91–97, 2018.

    Article  Google Scholar 

  22. Kato, T. A., A. Tsuda, M. Uesaka, A. Fujimori, T. Kamada, H. Tsujii, and R. Okayasu. In vitro characterization of cells derived from chordoma cell line U-CH1 following treatment with X-rays, heavy ions and chemotherapeutic drugs. Radiat. Oncol. 6(1):1–9, 2011.

    Article  Google Scholar 

  23. Khoei, S., S. Delfan, A. Neshasteh-Riz, and S. R. Mahdavi. Evaluation of the combined effect of 2ME2 and 60Co on the inducement of DNA damage by IUdR in a spheroid model of the U87MG glioblastoma cancer cell line using alkaline comet assay. Cell J. 13(2):83, 2011.

    Google Scholar 

  24. Kim, W., H. Youn, S. Lee, E. Kim, D. Kim, J. S. Lee, J.-M. Lee, and B. Youn. RNF138-mediated ubiquitination of rpS3 is required for resistance of glioblastoma cells to radiation-induced apoptosis. Exp. Mol. Med. 50(1):2018.

    Article  Google Scholar 

  25. Kutikov, A. B., and J. Song. Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomater. Sci. Eng. 1(7):463–480, 2015.

    Article  Google Scholar 

  26. Laurent, S., S. Dutz, U. O. Häfeli, and M. Mahmoudi. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166(1):8–23, 2011.

    Article  Google Scholar 

  27. Man, J., J. D. Shoemake, T. Ma, A. E. Rizzo, A. R. Godley, Q. Wu, A. M. Mohammadi, S. Bao, J. N. Rich, and S. Y. Jennifer. Hyperthermia sensitizes glioma stem-like cells to radiation by inhibiting AKT signaling. Cancer Res. 75(8):1760–1769, 2015.

    Article  Google Scholar 

  28. Mohammadi, S., S. Khoei, and S. R. Mahdavi. The combination effect of poly (lactic-co-glycolic acid) coated iron oxide nanoparticles as 5-fluorouracil carrier and X-ray on the level of DNA damages in the DU 145 human prostate carcinoma cell line. J. Bionanosci. 6(1):23–27, 2012.

    Article  Google Scholar 

  29. Nazli, C., T. I. Ergenc, Y. Yar, H. Y. Acar, and S. Kizilel. RGDS-functionalized polyethylene glycol hydrogel-coated magnetic iron oxide nanoparticles enhance specific intracellular uptake by HeLa cells. Int. J. Nanomed. 7:1903–1920, 2012.

    Google Scholar 

  30. Neshasteh-Riz, A., W. Angerson, J. Reeves, G. Smith, R. Rampling, and R. Mairs. Incorporation of iododeoxyuridine in multicellular glioma spheroids: implications for DNA-targeted radiotherapy using Auger electron emitters. Br. J. Cancer 75(4):493, 1997.

    Article  Google Scholar 

  31. Oghabian, M. A., M. Jeddi-Tehrani, A. Zolfaghari, F. Shamsipour, S. Khoei, and S. Amanpour. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J. Nanosci. Nanotechnol. 11(6):5340–5344, 2011.

    Article  Google Scholar 

  32. Rajaee, Z., S. Khoei, S. R. Mahdavi, M. Ebrahimi, S. Shirvalilou, and A. Mahdavian. Evaluation of the effect of hyperthermia and electron radiation on prostate cancer stem cells. Radiat. Environ. Biophys. 57(2):133–142, 2018.

    Article  Google Scholar 

  33. Rajaee, Z., S. Khoei, A. Mahdavian, S. Shirvalilou, S. R. Mahdavi, and M. Ebrahimi. Radio-thermo-sensitivity induced by gold magnetic nanoparticles in the monolayer culture of human prostate carcinoma cell line DU145. Anti-Cancer Agents Med. Chem. 20(3):315–324, 2020.

    Article  Google Scholar 

  34. Rezaie, P., S. Khoei, S. Khoee, S. Shirvalilou, and S. R. Mahdavi. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line. Int. J. Radiat. Biol. 94(11):1027–1037, 2018.

    Article  Google Scholar 

  35. Sanz, B., M. P. Calatayud, T. E. Torres, M. L. Fanarraga, M. R. Ibarra, and G. F. Goya. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials 114:62–70, 2017.

    Article  Google Scholar 

  36. Shand, N., F. Weber, L. Mariani, M. Bernstein, A. Gianella-Borradori, Z. A. Long, A. Sorensen, and N. Barbier. A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. Hum. Gene Ther. 10(14):2325–2335, 1999.

    Article  Google Scholar 

  37. Shirvalilou, S., S. Khoei, A. J. Esfahani, M. Kamali, M. Shirvaliloo, R. Sheervalilou, and P. Mirzaghavami. Magnetic hyperthermia as an adjuvant cancer therapy in combination with radiotherapy versus radiotherapy alone for recurrent/progressive glioblastoma: a systematic review. J. Neuro-Oncol. 1–10, 2021.

  38. Shirvalilou, S., S. Khoei, S. Khoee, N. J. Raoufi, M. R. Karimi, and A. Shakeri-Zadeh. Development of a magnetic nano-graphene oxide Carrier for improved glioma-targeted drug delivery and imaging: In vitro and in vivo evaluations. Chemico-Biol. Interact. 295:97–108, 2018.

    Article  Google Scholar 

  39. Stupp, R., W. P. Mason, M. J. Van Den Bent, M. Weller, B. Fisher, M. J. Taphoorn, K. Belanger, A. A. Brandes, C. Marosi, and U. Bogdahn. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10):987–996, 2005.

    Article  Google Scholar 

  40. Sun, L., Z.-G. Cui, S. A. Zakki, Q.-W. Feng, M.-L. Li, and H. Inadera. Mechanistic study of nonivamide enhancement of hyperthermia-induced apoptosis in U937 cells. Free Radic. Biol. Med. 120:147–159, 2018.

    Article  Google Scholar 

  41. Taylor, U., S. Klein, S. Petersen, W. Kues, S. Barcikowski, and D. Rath. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles. Cytometry Part A 77(5):439–446, 2010.

    Google Scholar 

  42. Ulery, B. D., L. S. Nair, and C. T. Laurencin. Biomedical applications of biodegradable polymers. J. Polym. Sci. Part B 49(12):832–864, 2011.

    Article  Google Scholar 

  43. Van Tellingen, O., B. Yetkin-Arik, M. De Gooijer, P. Wesseling, T. Wurdinger, and H. de Vries. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist. Updates 19:1–12, 2015.

    Article  Google Scholar 

  44. Xu, H., and Y. Pan. Experimental evaluation on the heating efficiency of magnetoferritin nanoparticles in an alternating magnetic field. Nanomaterials 9(10):1457, 2019.

    Article  Google Scholar 

  45. Yi, G.-Q., B. Gu, and L.-K. Chen. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumor Biol. 35(3):2445–2449, 2014.

    Article  Google Scholar 

  46. Yuan, X., C. Fahlman, K. Tabassi, and J. A. Williams. Synthetic, implantable, biodegradable polymers for controlled release of radiosensitizers. Cancer Biother. Radiopharm. 14(3):177–186, 1999.

    Article  Google Scholar 

  47. Zheng, S., X. Gao, X. Liu, T. Yu, T. Zheng, Y. Wang, and C. You. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo. Int. J. Nanomed. 11:2721, 2016.

    Google Scholar 

Download references

Acknowledgments

We thank Pasteur Institute of Iran for providing U87MG cells. The Radiotherapy Centre of Asia Hospital is acknowledged for providing training and equipment for Radiotherapy.

Conflict of interest

The author(s) declared no conflict of interest.

Ethical Approval

No human studies were carried out by the author for this article. No animal studies were carried out by the authors for this article.

Funding

This work was supported by Grant No. 25052 from the School of Medicine of Iran University of Medical Sciences (IUMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samideh Khoei or Sakine Shirvalilou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Pinar Zorlutuna oversaw the review of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 316 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khoei, S., Hosseini, V., Hosseini, M. et al. Enhancement of Radio-Thermo-Sensitivity of 5-Iodo-2-Deoxyuridine-Loaded Polymeric-Coated Magnetic Nanoparticles Triggers Apoptosis in U87MG Human Glioblastoma Cancer Cell Line. Cel. Mol. Bioeng. 14, 365–377 (2021). https://doi.org/10.1007/s12195-021-00675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00675-y

Keywords

  • 5-iodo-2-deoxyuridine
  • Glioblastoma
  • Water bath hyperthermia
  • Alternating magnetic field
  • Ionizing radiation
  • Apoptosis