Skip to main content

Polymer and Crosslinker Content Influences Performance of Encapsulated Live Biotherapeutic Products

Abstract

Introduction

Live biotherapeutic products (LBPs), or therapeutic microbes, are an emerging therapeutic modality for prevention and treatment of gastrointestinal diseases. Since LBPs are living, they are uniquely sensitive to external stresses (e.g., oxygen, acid) encountered during manufacturing, storage, and delivery. Here, we systematically evaluate how polymer and crosslinker concentration affects the performance of an encapsulated LBP toward developing a comprehensive framework for the characterization and optimization of LBP delivery systems.

Methods

We encapsulate a model LBP, Lactobacillus casei ATCC 393, in calcium chloride (CaCl2)-crosslinked alginate beads, and evaluate how alginate and CaCl2 concentrations influence LBP formulation performance, including: (i) encapsulation efficiency, (ii) shrinkage upon drying, (iii) survival upon lyophilization, (iv) acid resistance, (v) release, and (vi) metabolite secretion. Approaches from microbiology (e.g., colony forming unit enumeration), materials science (e.g., scanning electron microscopy), and pharmaceutical sciences (e.g., release assays) are employed.

Results

LBP-encapsulating alginate beads were systematically evaluated as a function of alginate and CaCl2 concentrations. Specifically: (i) encapsulation efficiency of all formulations was >50%, (ii) all alginate beads shrunk (after lyophilization) and recovered (after rehydration) similarly, (iii) at 10% alginate concentration, lower CaCl2 concentration decreased survival upon lyophilization, (iv) 10% alginate improved acid resistance, (v) sustained release was enabled by increasing alginate and CaCl2 concentrations, and (vi) encapsulation did not impair secretion of l-lactate as compared to free LBP.

Conclusions

This research demonstrates that polymer content and crosslinking extent modulate the performance of polymer-based LBP delivery systems, motivating research into the optimization of material properties for LBP delivery systems.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. Acker, J., and L. McGann. Membrane damage occurs during the formation of intracellular ice. Cryo Lett. 22:241–254, 2001.

    Google Scholar 

  2. Annan, N., A. Borza, and L. T. Hansen. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res. Int. 41:184–193, 2008.

    Article  Google Scholar 

  3. Anselmo, A. C., Y. Gokarn, and S. Mitragotri. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18:19–40, 2019.

    Article  Google Scholar 

  4. Anselmo, A. C., K. J. McHugh, J. Webster, R. Langer, and A. Jaklenec. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28:9486–9490, 2016.

    Article  Google Scholar 

  5. Carvalho, A. S., J. Silva, P. Ho, P. Teixeira, F. X. Malcata, and P. Gibbs. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int. Dairy J. 14:835–847, 2004.

    Article  Google Scholar 

  6. Cattelan, G., A. Guerrero Gerbolés, R. Foresti, P. P. Pramstaller, A. Rossini, M. Miragoli, and C. Caffarra Malvezzi. Alginate formulations: current developments in the race for hydrogel-based cardiac regeneration. Front. Bioeng. Biotechnol. 8:414, 2020.

    Article  Google Scholar 

  7. Cheng, Q., L. Liu, M. Xie, H. Li, D. Ma, and W. Xue. A colon-targeted oral probiotics delivery system using an enzyme-triggered fuse-like microcapsule. Adv. Healthc. Mater. 10(8):2001953, 2021.

    Article  Google Scholar 

  8. Cook, M. T., G. Tzortzis, D. Charalampopoulos, and V. V. Khutoryanskiy. Microencapsulation of probiotics for gastrointestinal delivery. J. Control. Release. 162:56–67, 2012.

    Article  Google Scholar 

  9. Ding, W., and N. Shah. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 72:M446–M450, 2007.

    Article  Google Scholar 

  10. Dong, Q. Y., M. Y. Chen, Y. Xin, X. Y. Qin, Z. Cheng, L. E. Shi, and Z. X. Tang. Alginate-based and protein-based materials for probiotics encapsulation: a review. Int. J. Food Sci. Technol. 48:1339–1351, 2013.

    Article  Google Scholar 

  11. Falco, C. Y., P. Falkman, J. Risbo, M. Cárdenas, and B. Medronho. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr. Polym. 172:175–183, 2017.

    Article  Google Scholar 

  12. Farina, M., J. F. Alexander, U. Thekkedath, M. Ferrari, and A. Grattoni. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Del. Rev. 139:92–115, 2019.

    Article  Google Scholar 

  13. Feng, P., Z. Cao, X. Wang, J. Li, and J. Liu. On-Demand Bacterial Reactivation by Restraining within a Triggerable Nanocoating. Adv. Mater. 32:2002406, 2020.

    Article  Google Scholar 

  14. Garber, K. First microbiome-based drug clears phase III, in clinical trial turnaround. Nat. Rev. Drug Discov. 19:655–656, 2020.

    Article  Google Scholar 

  15. Guziewicz, N., A. Best, B. Perez-Ramirez, and D. L. Kaplan. Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials. 32:2642–2650, 2011.

    Article  Google Scholar 

  16. Hébrard, G., V. Hoffart, E. Beyssac, J.-M. Cardot, M. Alric, and M. Subirade. Coated whey protein/alginate microparticles as oral controlled delivery systems for probiotic yeast. J. Microencapsul. 27:292–302, 2010.

    Article  Google Scholar 

  17. Heimbuck, A. M., T. R. Priddy-Arrington, B. J. Sawyer, and M. E. Caldorera-Moore. Effects of post-processing methods on chitosan-genipin hydrogel properties. Mater. Sci. Eng. C. 98:612–618, 2019.

    Article  Google Scholar 

  18. Hong, W., X. Zhao, J. Zhou, and Z. Suo. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phys. Solids. 56:1779–1793, 2008.

    MATH  Article  Google Scholar 

  19. Iraporda, C., D. E. Romanin, A. A. Bengoa, A. J. Errea, D. Cayet, B. Foligné, J.-C. Sirard, G. L. Garrote, A. G. Abraham, and M. Rumbo. Local treatment with lactate prevents intestinal inflammation in the TNBS-induced colitis model. Front. Immunol. 7:651, 2016.

    Article  Google Scholar 

  20. Jimenez, M., R. Langer, and G. Traverso. Microbial therapeutics: new opportunities for drug delivery. J. Exp. Med. 216:1005, 2019.

    Article  Google Scholar 

  21. Jonas, A. M., K. Glinel, A. Behrens, A. C. Anselmo, R. S. Langer, and A. Jaklenec. Controlling the growth of Staphylococcus epidermidis by layer-by-layer encapsulation. ACS Appl. Mater. Interfaces. 10:16250–16259, 2018.

    Article  Google Scholar 

  22. Kailasapathy, K. Microencapsulation of probiotic bacteria: technology and potential applications. Curr. Issues Intest. Microbiol. 3:39–48, 2002.

    Google Scholar 

  23. Kamath, K. R., and K. Park. Biodegradable hydrogels in drug delivery. Adv. Drug Del. Rev. 11:59–84, 1993.

    Article  Google Scholar 

  24. Krasaekoopt, W., B. Bhandari, and H. Deeth. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14:737–743, 2004.

    Article  Google Scholar 

  25. Kurtz, C. B., Y. A. Millet, M. K. Puurunen, M. Perreault, M. R. Charbonneau, V. M. Isabella, J. W. Kotula, E. Antipov, Y. Dagon, and W. S. Denney. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11(475):7975, 2019.

    Article  Google Scholar 

  26. Lee, B. B., P. Ravindra, and E. S. Chan. Size and shape of calcium alginate beads produced by extrusion dripping. Chem. Eng. Technol. 36:1627–1642, 2013.

    Google Scholar 

  27. Leslie, S. B., E. Israeli, B. Lighthart, J. H. Crowe, and L. M. Crowe. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61:3592–3597, 1995.

    Article  Google Scholar 

  28. Li, S., W. Jiang, C. Zheng, D. Shao, Y. Liu, S. Huang, J. Han, J. Ding, Y. Tao, and M. Li. Oral delivery of bacteria: basic principles and biomedical applications. J. Control. Release. 327:801–833, 2020.

    Article  Google Scholar 

  29. Llopis, M., M. Antolin, M. Carol, N. Borruel, F. Casellas, C. Martinez, E. Espín-Basany, F. Guarner, and J. R. Malagelada. Lactobacillus casei downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflamm. Bowel Dis. 15:275–283, 2009.

    Article  Google Scholar 

  30. Lueckgen, A., D. S. Garske, A. Ellinghaus, D. J. Mooney, G. N. Duda, and A. Cipitria. Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration. Biomaterials. 217:2019.

    Article  Google Scholar 

  31. Mazur, P. Physical factors implicated in the death of microorganisms at subzero temperatures. Ann. N. Y. Acad. Sci. 85:610–629, 1960.

    Article  Google Scholar 

  32. Mazur, P., S. P. Leibo, and E. H. Y. Chu. A two-factor hypothesis of freezing injury: evidence from Chinese hamster tissue-culture cells. Exp. Cell Res. 71:345–355, 1972.

    Article  Google Scholar 

  33. McEntee, M. K. E., S. K. Bhatia, L. Tao, S. C. Roberts, and S. R. Bhatia. Tunable transport of glucose through ionically-crosslinked alginate gels: effect of alginate and calcium concentration. J. Appl. Polym. Sci. 107:2956–2962, 2008.

    Article  Google Scholar 

  34. McGovern, B. H., C. B. Ford, M. R. Henn, D. S. Pardi, S. Khanna, E. L. Hohmann, E. J. O’Brien, C. A. Desjardins, P. Bernardo, and J. R. Wortman. SER-109, an investigational microbiome drug to reduce recurrence after Clostridioides difficile infection: lessons learned from a phase 2 trial. Dis: Clin. Infect, 2020.

    Google Scholar 

  35. Mimee, M., R. J. Citorik, and T. K. Lu. Microbiome therapeutics—advances and challenges. Adv. Drug Del. Rev. 105:44–54, 2016.

    Article  Google Scholar 

  36. Morgan, C. A., N. Herman, P. White, and G. Vesey. Preservation of micro-organisms by drying; a review. J. Microbiol. Methods. 66:183–193, 2006.

    Article  Google Scholar 

  37. Park, J. S., D. G. Woo, B. K. Sun, H.-M. Chung, S. J. Im, Y. M. Choi, K. Park, K. M. Huh, and K.-H. Park. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. J. Control. Release. 124:51–59, 2007.

    Article  Google Scholar 

  38. Qiu, K., I. Young, B. M. Woodburn, Y. Huang, and A. C. Anselmo. Polymeric films for the encapsulation, storage, and tunable release of therapeutic microbes. Adv. Healthc. Mater. 9:1901643, 2020.

    Article  Google Scholar 

  39. Steidler, L., W. Hans, L. Schotte, S. Neirynck, F. Obermeier, W. Falk, W. Fiers, and E. Remaut. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science. 289:1352–1355, 2000.

    Article  Google Scholar 

  40. Strand, B. L., A. E. Coron, and G. Skjak-Braek. Current and future perspectives on alginate encapsulated pancreatic islet. Stem Cells Transl. Med. 6:1053–1058, 2017.

    Article  Google Scholar 

  41. Strasser, S., M. Neureiter, M. Geppl, R. Braun, and H. Danner. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J. Appl. Microbiol. 107:167–177, 2009.

    Article  Google Scholar 

  42. Suez, J., and E. Elinav. The path towards microbiome-based metabolite treatment. Nat. Microbiol. 2:17075, 2017.

    Article  Google Scholar 

  43. Talwalkar, A., and K. Kailasapathy. The role of oxygen in the viability of probiotic bacteria with reference L. acidophilus and Bifidobacterium spp. Curr. Issues Intest. Microbiol. 5:1–8, 2004.

    Google Scholar 

  44. Tang, T.-C., E. Tham, X. Liu, K. Yehl, A. J. Rovner, H. Yuk, F. J. Isaacs, X. Zhao, and T. K. Lu. Tough hydrogel-based biocontainment of engineered organisms for continuous, self-powered sensing and computation. BioRxiv 2020. https://doi.org/10.1101/2020.02.11.941120.

    Article  Google Scholar 

  45. Tien, M.-T., S. E. Girardin, B. Regnault, L. Le Bourhis, M.-A. Dillies, J.-Y. Coppée, R. Bourdet-Sicard, P. J. Sansonetti, and T. Pédron. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J. Immunol. 176:1228–1237, 2006.

    Article  Google Scholar 

  46. Vargason, A. M., and A. C. Anselmo. Clinical translation of microbe-based therapies: current clinical landscape and preclinical outlook. Bioeng. Transl. Med. 3:124–137, 2018.

    Article  Google Scholar 

  47. Vargason, A. M., S. Santhosh, and A. C. Anselmo. Surface modifications for improved delivery and function of therapeutic bacteria. Small. 16:2001705, 2020.

    Article  Google Scholar 

  48. Voo, W.-P., C.-W. Ooi, A. Islam, B.-T. Tey, and E.-S. Chan. Calcium alginate hydrogel beads with high stiffness and extended dissolution behaviour. Eur. Polym. J. 75:343–353, 2016.

    Article  Google Scholar 

  49. Wang, L. L.-W., M. E. Janes, N. Kumbhojkar, N. Kapate, J. R. Clegg, S. Prakash, M. K. Heavey, Z. Zhao, A. C. Anselmo, and S. Mitragotri. Cell therapies in the clinic. Bioeng. Transl. Med. 2021. https://doi.org/10.1002/btm2.10214.

    Article  Google Scholar 

  50. Young, V. B. Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clin. Microbiol. Infect. 22:905–909, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM137898. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

KQ., Y.H., and A.C.A. declare that they have no conflict of interest.

Ethical Approval

No animal studies were carried out by the authors for this article. No human studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron C. Anselmo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr. Aaron C. Anselmo is an Assistant Professor in the Division of Pharmacoengineering and Molecular Pharmaceutics, in the Eshelman School of Pharmacy, at the University of North Carolina at Chapel Hill. Dr. Anselmo’s research program focuses on developing delivery systems for live biotherapeutic products (LBPs) (e.g., therapeutic microbes) to improve their colonization, control interactions with the host, and optimize the pharmacokinetic profile of their metabolites or secreted therapeutics. Dr. Anselmo has co-authored over 45 papers in journals such as Science Translational Medicine, Nature Nanotechnology, Science, Nature Reviews Drug Discovery, Nature Biomedical Engineering, PNAS, Advanced Materials, and ACS Nano. Dr. Anselmo has recently been recognized with awards such as the AIChE 35 Under 35 award, Pharmaceutics Young Investigator Award, and the Young Innovator Award in Nanobiotechnology. Dr. Anselmo’s research is supported by multiple grants from the NIH, including an NIH NIGMS R35 Maximizing Investigators’ Research Award for Early Stage Investigators. Dr. Anselmo completed his bachelor’s degree in chemical engineering at Rensselaer Polytechnic Institute, his Ph.D. in chemical engineering as an NSF GRFP Fellow at the University of California at Santa Barbara working with Professor Samir Mitragotri, and his postdoc at the Massachusetts Institute of Technology working with Professor Robert Langer.

figure a

This article is part of the 2021 CMBE Young Innovators special issue.

Associate Editor Stephanie Michelle Willerth oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, K., Huang, Y. & Anselmo, A.C. Polymer and Crosslinker Content Influences Performance of Encapsulated Live Biotherapeutic Products. Cel. Mol. Bioeng. 14, 487–499 (2021). https://doi.org/10.1007/s12195-021-00674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00674-z

Keywords

  • Drug delivery
  • Polymer encapsulation
  • Probiotics
  • Alginate
  • Live biotherapeutic products