Skip to main content

miR-140-5p Overexpression Protects Against Lipopolysaccharide-Induced Necrotizing Pneumonia via Targeting Toll-Like Receptor 4



This study is to identify the effects of miRNA-140-5p on necrotizing pneumonia (NP) and its underlying mechanism.


The mRNA levels of miRNA-140-5p and TLR4 and secretion of IL-1β, IL-6, and TNF-α in peripheral blood from children with NP and healthy volunteers were determined using qRT-PCR and specific ELISAs. The interactions between miRNA-140-5p and TLR4 were investigated using a dual-luciferase reporter system. Cell viabilities were determined using a CCK-8 assay. qRT-PCR, western blotting, and specific ELISAs were applied to determine the expressions of genes in the cells. Peripheral blood from children with NP had significantly elevated levels of TLR4 but significantly lower levels of miR-140-5p compared to the control.


Spearman’s rank correlation analysis showed a negative correlation between TLR4 and miR-140-5p. miR-140-5p regulated the expressions of TLR4 in A549 cells. Additionally, LPS induced a significant enhancement in the levels of TLR4 but significant reduction in the levels of miR-140-5p. The overexpression of miR-140-5p suppressed cell apoptosis and induced the release of inflammatory cytokines in the LPS-induced A549 cells.


The underlying mechanisms of miR-140-5p on the regulation of TLR4 are in part by the regulation of p65. The miR-140-5p inhibits necrotizing pneumonia by regulating TLR-4 via TNF–p65 signaling pathway.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. Beutler, B. Tlr4: central component of the sole mammalian LPS sensor. Curr. Opin. Immunol. 12(1):20–26, 2000.

    Article  Google Scholar 

  2. Chuang, C. Y., T. L. Chen, Y. G. Cherng, Y. T. Tai, T. G. Chen, and R. M. Chen. Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway. Arch. Toxicol. 85(3):209–218, 2011.

    Article  Google Scholar 

  3. Demedts, I. K., K. R. Bracke, T. Maes, G. F. Joos, and G. G. Brusselle. Different roles for human lung dendritic cell subsets in pulmonary immune defense mechanisms. Am. J. Respir. Cell Mol. Biol. 35(3):387–393, 2006.

    Article  Google Scholar 

  4. Fei, S., L. Cao, and L. Pan. microRNA-3941 targets IGF2 to control LPS-induced acute pneumonia in A549 cells. Mol. Med. Rep. 17(3):4019–4026, 2018.

    Google Scholar 

  5. Guo, J., and Y. Cheng. MicroRNA-1247 inhibits lipopolysaccharides-induced acute pneumonia in A549 cells via targeting CC chemokine ligand 16. Biomed. Pharmacother. 104:60–68, 2018.

    Article  Google Scholar 

  6. Guo, H., R. Q. Qi, J. Sheng, C. Liu, H. Ma, H. X. Wang, J. H. Li, X. H. Gao, Y. S. Wan, and H. D. Chen. MiR-155, a potential serum marker of extramammary Paget’s disease. BMC Cancer 18(1):1078, 2018.

    Article  Google Scholar 

  7. Hacimustafaoglu, M., S. Celebi, H. Sarimehmet, A. Gurpinar, and I. Ercan. Necrotizing pneumonia in children. Acta Paediatr. 93(9):1172–1177, 2004.

    Article  Google Scholar 

  8. Jiang, K., T. Zhang, N. Yin, X. Ma, G. Zhao, H. Wu, C. Qiu, and G. Deng. Geraniol alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis. Oncotarget 8(41):71038, 2017.

    Article  Google Scholar 

  9. Kaisho, T., and S. Akira. Toll-like receptors and their signaling mechanism in innate immunity. Acta Odontol. Scand. 59(3):124–130, 2001.

    Article  Google Scholar 

  10. Kawai, T., and S. Akira. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650, 2011.

    Article  Google Scholar 

  11. Kayagaki, N., M. T. Wong, I. B. Stowe, S. R. Ramani, L. C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W. P. Lee, A. Muszynski, L. S. Forsberg, R. W. Carlson, and V. M. Dixit. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341(6151):1246–1249, 2013.

    Article  Google Scholar 

  12. Kerem, E., Y. Bar Ziv, B. Rudenski, S. Katz, D. Kleid, and D. Branski. Bacteremic necrotizing pneumococcal pneumonia in children. Am. J. Respir. Crit. Care Med. 149(1):242–244, 1994.

    Article  Google Scholar 

  13. Krenke, K., M. Sanocki, E. Urbankowska, G. Kraj, M. Krawiec, T. Urbankowski, J. Peradzynska, and M. Kulus. Necrotizing pneumonia and its complications in children. Adv. Exp. Med. Biol. 857:9–17, 2015.

    Article  Google Scholar 

  14. Kumar, H., T. Kawai, and S. Akira. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 388(4):621–625, 2009.

    Article  Google Scholar 

  15. Labandeira-Rey, M., F. Couzon, S. Boisset, E. L. Brown, M. Bes, Y. Benito, E. M. Barbu, V. Vazquez, M. Höök, and J. Etienne. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315(5815):1130–1133, 2007.

    Article  Google Scholar 

  16. Li, X., J. Wang, H. Wu, P. Guo, C. Wang, Y. Wang, and Z. Zhang. Reduced peripheral blood miR-140 may be a biomarker for acute lung injury by targeting Toll-like receptor 4 (TLR4). Exp. Ther. Med. 16(4):3632–3638, 2018.

    Google Scholar 

  17. Liu, M., T. Han, S. Shi, and E. Chen. Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38cells via modulating miR-100/NF-kappaB axis. Biochem. Biophys. Res. Commun. 500(3):589–596, 2018.

    Article  Google Scholar 

  18. Liu, Y., H. Yin, M. Zhao, and Q. Lu. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin. Rev. Allergy Immunol. 47(2):136–147, 2014.

    Article  Google Scholar 

  19. Lu, Y. C., W. C. Yeh, and P. S. Ohashi. LPS/TLR4 signal transduction pathway. Cytokine 42(2):145–151, 2008.

    Article  Google Scholar 

  20. Masters, I. B., A. F. Isles, and K. Grimwood. Necrotizing pneumonia: an emerging problem in children? Pneumonia 9:11, 2017.

    Article  Google Scholar 

  21. McAlinden, A., and G. I. Im. MicroRNAs in orthopaedic research: disease associations, potential therapeutic applications, and perspectives. J. Orthop. Res. 36(1):33–51, 2018.

    Google Scholar 

  22. Miller, S. I., R. K. Ernst, and M. W. Bader. LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 3(1):36–46, 2005.

    Article  Google Scholar 

  23. Rouzic, N., F. Janvier, N. Libert, E. Javouhey, G. Lina, J. Y. Nizou, P. Pasquier, D. Stamm, L. Brinquin, C. Pelletier, F. Vandenesch, D. Floret, J. Etienne, and Y. Gillet. Prompt and successful toxin-targeting treatment of three patients with necrotizing pneumonia due to Staphylococcus aureus strains carrying the Panton-Valentine leukocidin genes. J. Clin. Microbiol. 48(5):1952–1955, 2010.

    Article  Google Scholar 

  24. Soifer, H. S., J. J. Rossi, and P. Saetrom. MicroRNAs in disease and potential therapeutic applications. Mol. Ther. 15(12):2070–2079, 2007.

    Article  Google Scholar 

  25. Standiford, L. R., T. J. Standiford, M. J. Newstead, X. Zeng, M. N. Ballinger, M. A. Kovach, A. K. Reka, and U. Bhan. TLR4-dependent GM-CSF protects against lung injury in Gram-negative bacterial pneumonia. Am. J. Physiol. Lung Cell Mol. Physiol. 302(5):L447–L454, 2012.

    Article  Google Scholar 

  26. Sun, W., C. Liu, Y. Zhang, X. Qiu, L. Zhang, H. Zhao, Y. Rong, Y. Sun, and A. Ilexgenin. a novel pentacyclic triterpenoid extracted from Aquifoliaceae shows reduction of LPS-induced peritonitis in mice. Eur. J. Pharmacol. 797:94–105, 2017.

    Article  Google Scholar 

  27. Wu, Q., H. Li, J. Qiu, and H. Feng. Betulin protects mice from bacterial pneumonia and acute lung injury. Microb. Pathog. 75:21–28, 2014.

    Article  Google Scholar 

  28. Yang, H., J. Wang, J. H. Fan, Y. Q. Zhang, J. X. Zhao, X. J. Dai, Q. Liu, Y. J. Shen, C. Liu, W. D. Sun, and Y. Sun. Ilexgenin A exerts anti-inflammation and anti-angiogenesis effects through inhibition of STAT3 and PI3K pathways and exhibits synergistic effects with Sorafenib on hepatoma growth. Toxicol. Appl. Pharmacol. 315:90–101, 2017.

    Article  Google Scholar 

  29. Zhang, Q., Y. Weng, Y. Jiang, S. Zhao, D. Zhou, and N. Xu. Overexpression of miR-140-5p inhibits lipopolysaccharide-induced human intervertebral disc inflammation and degeneration by downregulating toll-like receptor 4. Oncol. Rep. 40(2):793–802, 2018.

    Google Scholar 

  30. Zhou, W., X. Wang, D. Yin, L. Xue, Z. Ma, Z. Wang, Q. Zhang, Z. Zhao, H. Wang, Y. Sun, and Y. Yang. Effect of miR-140-5p on the regulation of proliferation and apoptosis in NSCLC and its underlying mechanism. Exp. Ther. Med. 18(2):1350–1356, 2019.

    Google Scholar 

Download references


The study was supported by the General Support Project for Outstanding Youth in Universities in Anhui Province (gxyq2017091); R & D Projects Entrusted by Enterprises (2020XHX026); Priority Projects on Natural Science of Suzhou University (2016yzd04).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Haichao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Ankur Singh oversaw the review of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 147 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, C. & Kong, D. miR-140-5p Overexpression Protects Against Lipopolysaccharide-Induced Necrotizing Pneumonia via Targeting Toll-Like Receptor 4. Cel. Mol. Bioeng. 14, 339–348 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Necrotizing pneumonia
  • miRNA-140-5p
  • Inflammation
  • Toll-like receptor (TLR)-4
  • A549 cell line