Barre, P., and D. Eliezer. Structural transitions in tau k18 on micelle binding suggest a hierarchy in the efficacy of individual microtubule-binding repeats in filament nucleation. Protein Sci. 22:1037–1048, 2013.
Article
Google Scholar
Cabrales Fontela, Y., H. Kadavath, J. Biernat, D. Riedel, E. Mandelkow, and M. Zweckstetter. Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat. Commun. 8(1):1–12, 2017. https://doi.org/10.1038/s41467-017-02230-8.
Article
Google Scholar
Camici, G. G., G. Savarese, A. Akhmedov, and T. F. Lüscher. Molecular mechanism of endothelial and vascular aging: Implications for cardiovascular disease. Eur. Heart J. 36:3392–3403, 2015.
Article
Google Scholar
Chen, J., Y. Kanai, N. J. Cowan, and N. Hirokawa. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360:674–677, 1992.
Article
Google Scholar
Chin, A. S., et al. Epithelial cell chirality revealed by three-dimensional spontaneous rotation. Proc. Natl. Acad. Sci. U. S. A. 115:12188–12193, 2018.
Article
Google Scholar
Cleveland, D. W., S. Y. Hwo, and M. W. Kirschner. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J. Mol. Biol. 116:207–225, 1977.
Article
Google Scholar
Di Marco, L. Y., et al. Vascular dysfunction in the pathogenesis of Alzheimer’s disease: a review of endothelium-mediated mechanisms and ensuing vicious circles. Neurobiol. Dis. 82:593–606, 2015.
Article
Google Scholar
Drake, J., C. D. Link, and D. A. Butterfield. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging 24:415–420, 2003.
Article
Google Scholar
Drechsel, D. N., A. A. Hyman, M. H. Cobb, and M. W. Kirschner. Drechsel. Mol. Biol. Cell 3:1141–1154, 1992.
Article
Google Scholar
Elie, A., et al. Tau co-organizes dynamic microtubule and actin networks. Sci. Rep. 5:1–10, 2015.
Article
Google Scholar
Fan, J., H. Zhang, T. Rahman, D. N. Stanton, and L. Q. Wan. Cell organelle-based analysis of cell chirality. Commun. Integr. Biol. 12:78–81, 2019.
Article
Google Scholar
Fan, J., et al. Cell chirality regulates intercellular junctions and endothelial permeability. Sci. Adv. 4:2111, 2018.
Article
Google Scholar
Fulga, T. A., I. Elson-Schwab, V. Khurana, M. L. Steinhilb, T. L. Spires, B. T. Hyman, and M. B. Feany. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat. Cell Biol. 9(2):139–148, 2007. https://doi.org/10.1038/ncb1528.
Article
Google Scholar
Gonzalez-Velasquez, F. J., J. A. Kotarek, and M. A. Moss. Soluble aggregates of the amyloid-β protein selectively stimulate permeability in human brain microvascular endothelial monolayers. J. Neurochem. 107:466–477, 2008.
Article
Google Scholar
Henríquez, J. P., D. Cross, C. Vial, and R. B. Maccioni. Subpopulations of tau interact with microtubules and actin filaments in various cell types. Cell Biochem. Funct. 13(4):239–250, 1995. https://doi.org/10.1002/cbf.290130404.
Article
Google Scholar
Hoelzle, M. K., and T. Svitkina. The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol. Biol. Cell 23:310–323, 2012.
Article
Google Scholar
Holtzman, D. M. Vivo effects of ApoE and clusterin on amyloid- β metabolism and neuropathology evidence that amyloid- β conformational to Alzheimer’ s disease. Cell Biol. 23:247–254, 2004.
Google Scholar
Hu, Y., X. Yao, Q. Liu, Y. Wang, R. Liu, S. Cui, and J. Ding. Left-right symmetry or asymmetry of cells on stripe-like micropatterned material surfaces. Chin. J. Chem. 36(7):605–611, 2018. https://doi.org/10.1002/cjoc.201800124.
Article
Google Scholar
Jiang, Q., et al. ApoE promotes the proteolytic degradation of Aβ. Neuron 58:681–693, 2008.
Article
Google Scholar
Kovac, A., M. Zilkova, M. A. Deli, N. Zilka, and M. Novak. Human truncated tau is using a different mechanism from amyloid-β to damage the blood-brain barrier. J. Alzheimer’s Dis. 18:897–906, 2009.
Article
Google Scholar
Larsson, C. Protein kinase C and the regulation of the actin cytoskeleton. Cell. Signal. 18(3):276–284, 2006. https://doi.org/10.1016/j.cellsig.2005.07.010.
Article
Google Scholar
Lee, W., et al. Amyloid beta peptide directly inhibits PKC activation. Mol. Cell. Neurosci. 26:222–231, 2004.
Article
Google Scholar
Leszek, J., M. Sochocka, and K. Gasiorowski. Vascular factors and epigenetic modifications in the pathogenesis of Alzheimer’s disease. J. Neurol. Sci. 323:25–32, 2012.
Article
Google Scholar
Maoz, B. M., et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36:865–877, 2018.
Article
Google Scholar
Marco, S., and S. D. Skaper. Amyloid β-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci. Lett. 401:219–224, 2006.
Article
Google Scholar
Nishitsuji, K., T. Hosono, T. Nakamura, G. Bu, and M. Michikawa. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J. Biol. Chem. 286:17536–17542, 2011.
Article
Google Scholar
Olsson, B., et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15:673–684, 2016.
Article
Google Scholar
Polacheck, W. J., et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature 552:258–262, 2017.
Article
Google Scholar
Ray, P., et al. Intrinsic cellular chirality regulates left–right symmetry breaking during cardiac looping. Proc. Natl. Acad. Sci. U. S. A. 115:E11568–E11577, 2018.
Article
Google Scholar
Sandoval, R., A. B. Malik, R. D. Minshall, P. Kouklis, C. A. Ellis, and C. Tiruppathi. Ca2+ signalling and PKCα activate increased endothelial permeability by disassembly of VE-cadherin junctions. J. Physiol. 533(2):433–445, 2001. https://doi.org/10.1111/j.1469-7793.2001.0433a.x.
Article
Google Scholar
Satoh, J. I., Y. Kino, and S. Niida. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for alzheimer’s disease from public data. Biomark. Insights 2015:21–31, 2015.
Google Scholar
Stopschinski, B. E., et al. Specific glycosaminoglycan chain length and sulfation patterns are required for cell uptake of tau versus -synuclein and -amyloid aggregates. J. Biol. Chem. 293:10826–10840, 2018.
Article
Google Scholar
Sullivan, K. G., L. N. Vandenberg, and M. Levin. Cellularmigration may exhibit intrinsic left-right asymmetries: a meta-analysis. bioRxiv. 2018:269217.
Sweeney, M. D., A. P. Sagare, and B. V. Zlokovic. Blood–brain barrier breakdown in Alzheimer’s disease and other pdf. Nat. Rev. Neurol. 14:133–150, 2018.
Article
Google Scholar
Tamada, A., and M. Igarashi. Revealing chiral cell motility by 3D Riesz transform-differential interference contrast microscopy and computational kinematic analysis. Nat. Commun. 2017. https://doi.org/10.1038/s41467-017-02193-w.
Article
Google Scholar
Tee, Y. H., et al. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat. Cell Biol. 17:445–457, 2015.
Article
Google Scholar
Tokuda, T., et al. Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides. Biochem. J. 348:359–365, 2000.
Article
Google Scholar
Trinczek, B., J. Biernat, K. Baumann, E. Mandelkow, and E. M. Mandelkow. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol. Biol. Cell 6:1887–1902, 1995.
Article
Google Scholar
Verheijen, J., and K. Sleegers. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet. 34:434–447, 2018.
Article
Google Scholar
Wan, L. Q., A. S. Chin, K. E. Worley, and P. Ray. Cell chirality: emergence of asymmetry from cell culture. Philos. Trans. R. Soc. B Biol. Sci. 371:20150413, 2016.
Article
Google Scholar
Wan, L. Q., et al. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. Proc. Natl. Acad. Sci. 108:12295–12300, 2011.
Article
Google Scholar
Weingarten, M. D., A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner. A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. U. S. A. 72:1858–1862, 1975.
Article
Google Scholar
Xu, Q., et al. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci. 26:4985–4994, 2006.
Article
Google Scholar
Yao, X., and J. Ding. Effects of microstripe geometry on guided cell migration. ACS Appl. Mater. Interfaces. 12(25):27971–27983, 2020. https://doi.org/10.1021/acsami.0c05024.
Article
Google Scholar
Ye, M., et al. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci. Rep. 4:1–6, 2014.
Google Scholar
Zhao, J., et al. 3-O-Sulfation of heparan sulfate enhances tau interaction and cellular uptake. Angew. Chemie - Int. Ed. 59:1818–1827, 2020.
Article
Google Scholar
Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12:723–738, 2011.
Article
Google Scholar