Skip to main content
Log in

Effect of Heat Level and Expose Time on Denaturation of Collagen Tissues

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

The applied heat level and expose time are main issues in certain operations/applications, such as a laser assisted tissue welding, preparation of collagen-based biomaterials (films, implants). Therefore, the precise investigation of these parameters is crucial. The results can serve as a guideline to assess potential effects while maintaining the functionality of the collagen structures.

Methods

Collagen tissues from rat-tail tendon, calfskin, and bones are soaked in buffer solutions, then examined by microscope at different temperature levels.

Results

Increase in temperature reduced the microscopically observed collagen crimp contrast for calfskin and rat-tail tendons but not for bone tissues. The contrast level for rat tail tendon decreased down to 80% of its initial value at 37, 157, and 266 s for 70, 65, and 60 °C, respectively. The decrease in the crimp contrast was about only 25% and 2% at 55 and 50 °C after 2 h, respectively. 50% drop in contrast level was occurred for the skin samples at 16, 90, 110 and 1900 s for 70, 65, and 60 °C, respectively. The bone samples, did not show any significant differences in contrast levels.

Conclusion

The observed denaturation behaviours are in line with Arrhenius Law. This study could be expanded on to other types of tissues at wider temperature ranges to make a guideline for biological/medical processes that radiate heat in order to assess their side effects on collagen and other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bhagavan, N. V., and C.-E. Ha. Essentials of Medical Biochemistry: With Clinical Cases (2nd ed.). Amsterdam: Elsevier, 2015.

    Google Scholar 

  2. Bosch, T., A. Manich, J. Carilla, J. Cot, A. Marsal, H.-J. Kellert, et al. Collagen thermal transitions in chrome leather—thermogravimetry and differential scanning calorimetry. J. Am. Leather Chem. Assoc. 97:441–450, 2002.

    Google Scholar 

  3. Bürck, J., O. Aras, L. Bertinetti, C. A. Ilhan, M. A. Ermeydan, R. Schneider, A. S. Ulrich, and M. Kazanci. Observation of triple helix motif on electrospun collagen nanofibers and its effect on the physical and structural properties. J. Mol. Struct. 1151:73–80, 2018.

    Article  Google Scholar 

  4. Bürck, J., S. Heissler, U. Geckle, M. F. Ardakani, R. Schneider, A. S. Ulrich, and M. Kazanci. Resemblance of electrospun collagen nanofibers to their native structure. Langmuir 29:1562–1572, 2013.

    Article  Google Scholar 

  5. Cadenaro, M., L. Fontanive, C. O. Navarra, P. Gobbi, A. Mazzoni, R. Di Lenarda, et al. Effect of carboidiimide on thermal denaturation temperature of dentin collagen. Dent. Mater. 32:492–498, 2016.

    Article  Google Scholar 

  6. Çakir, H., S. Genç, and E. Güler. 360-degree Iris burns following conductive keratoplasty. J. Refract. Surg. 32(11):776–778, 2016.

    Article  Google Scholar 

  7. Chae, Y., G. Aguilar, E. J. Lavernia, and B. J. F. Wong. Characterization of temperature dependent mechanical behavior of cartilage. Lasers Surg. Med. 32:271–278, 2003.

    Article  Google Scholar 

  8. De Boer, J., S. Srinivas, A. Malekafzali, Z. Chen, and J. Nelson. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express 3:212–218, 1998.

    Article  Google Scholar 

  9. Eleswarapu, S. V., D. J. Responte, and K. A. Athanasiou. Tensile properties, collagen content, and crosslinks in connective tissues of the immature knee joint. PLoS ONE 6:e26178, 2011.

    Article  Google Scholar 

  10. Fitzpatrick, R. E. Pulsed carbon dioxide laser resurfacing of photoaged facial skin. Arch. Dermatol. 132(4):395–402, 1996.

    Article  Google Scholar 

  11. Flandin, F., C. Buffevant, and D. Herbage. A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim. Biophys. Acta 791:205–211, 1984.

    Article  Google Scholar 

  12. Flory, P. J., and R. R. Garrett. Phase transitions in Collagen and Gelatin systems1. J. Am. Chem. Soc. 80:4836–4845, 1958.

    Article  Google Scholar 

  13. Franchi, M., M. Fini, M. Quaranta, V. De Pasquale, M. Raspanti, G. Giavaresi, et al. Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat. 210:1–7, 2007.

    Article  Google Scholar 

  14. Hansen, K. A., J. A. Weiss, and J. K. Barton. Recruitment of tendon crimp with applied tensile strain. J. Biomech. Eng. 124:72–77, 2002.

    Article  Google Scholar 

  15. Hayashi, K., et al. The effect of thermal heating on the length and histologic properties of the glenohumeral joint capsule. Am. J. Sports Med. 25(1):107–112, 1997.

    Article  MathSciNet  Google Scholar 

  16. Jackson, M., D. S. Johnston, and D. Chapman. Differential scanning calorimetric and fourier transform infrared spectroscopic investigations of cerebroside polymorphism. Biochim. Biophys. Acta 944:497–506, 1988.

    Article  Google Scholar 

  17. Lewandowska, K., A. Sionkowska, S. Grabska, and B. Kaczmarek. Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan. Int. J. Biol. Macromol. 92:371–376, 2016.

    Article  Google Scholar 

  18. Liu, D., M. Nikoo, G. Boran, P. Zhou, and J. M. Regenstein. Collagen and Gelatin. Annu. Rev. Food Sci. Technol. 6:527–557, 2015.

    Article  Google Scholar 

  19. Lodish, H., A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. Molecular Cell Biology (4th ed.). New York: W. H. Freeman, 2000.

    Google Scholar 

  20. Magnusson, S. P., K. Qvortrup, J. O. Larsen, S. Rosager, P. Hanson, P. Aagaard, et al. Collagen fibril size and crimp morphology in ruptured and intact Achilles tendons. Matrix Biol. J. Int. Soc. Matrix Biol. 21:369–377, 2002.

    Article  Google Scholar 

  21. Mellal, I., A. Oukaira, E. Kengene, and A. Lakhssassi. Thermal therapy modalities for cancer treatment: a review and future perspectives. Int. J. Appl. Sci. 4:14, 2017.

    Google Scholar 

  22. Niven, H., E. Baer, and A. Hiltner. Organization of collagen fibers in rat tail tendon at the optical microscope level. Coll. Relat. Res. 2:131–142, 1982.

    Article  Google Scholar 

  23. Pfefer, T.J., B. Choi, G. Vargas, K.M. McNally-Heintzelman, and A.J. Welch. Mechanisms of laser-induced thermal coagulation of whole blood in vitro. In: Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX, 1999.

  24. Qin, Z., S. K. Balasubramanian, W. F. Wolkers, J. A. Pearce, and J. C. Bischof. Correlated parameter fit of arrhenius model for thermal denaturation of proteins and cells. Ann. Biomed. Eng. 42:2392–2404, 2014.

    Article  Google Scholar 

  25. Raspanti, M., A. Manelli, M. Franchi, and A. Ruggeri. The 3D structure of crimps in the rat Achilles tendon. Matrix Biol. J. Int. Soc. Matrix Biol. 24:503–507, 2005.

    Article  Google Scholar 

  26. Sun, X.-X., J. Fan, Y.-N. Hou, S. Liang, Y.-P. Zhang, and J.-X. Xiao. Fluorescence characterization of the thermal stability of collagen mimic peptides. Chin. Chem. Lett. 28:963–967, 2017.

    Article  Google Scholar 

  27. Sun, Y., et al. Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging. Biophys. J. 91(7):2620–2625, 2006.

    Article  Google Scholar 

  28. Tanaka, R., et al. In vivo visualization of dermal collagen fiber in skin burn by collagen-sensitive second-harmonic-generation microscopy. J. Biomed. Opt. 18(6):061231, 2013.

    Google Scholar 

Download references

Acknowledgments

We thank Enes Atas (scientist in Biomedical Engineering Department at Istanbul Medeniyet University) for helping us to prepare bone samples and Ekin Opar (research assistant in Biomedical Engineering Program at Istanbul Technical University) for analysis and discussing the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kazanci.

Ethics declarations

Conflict of interest

İrem Deniz Derman, Esat Can Şenel, Onur Ferhanoğlu, İnci Çilesiz, and Murat Kazanci declare that they have no conflicts of interest.

Ethical Standards

No human studies were carried out by the authors for this article and no animal studies were carried out by the authors for this article.

Additional information

Associate Editor Stephanie Michelle Willerth oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derman, İ.D., Şenel, E.C., Ferhanoğlu, O. et al. Effect of Heat Level and Expose Time on Denaturation of Collagen Tissues. Cel. Mol. Bioeng. 14, 113–119 (2021). https://doi.org/10.1007/s12195-020-00653-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00653-w

Keywords

Navigation