Skip to main content

Advertisement

Log in

The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Cancer associated fibroblasts (CAFs) are known to participate in anti-cancer drug resistance by upregulating desmoplasia and pro-survival mechanisms within the tumor microenvironment. In this regard, anti-fibrotic drugs (i.e., tranilast) have been repurposed to diminish the elastic modulus of the stromal matrix and reduce tumor growth in presence of chemotherapeutics (i.e., doxorubicin). However, the quantitative assessment on impact of these stromal targeting drugs on matrix stiffness and tumor progression is still missing in the sole presence of CAFs.

Methods

We developed a high-density 3D microengineered tumor model comprised of MDA-MB-231 (highly invasive breast cancer cells) embedded microwells, surrounded by CAFs encapsulated within collagen I hydrogel. To study the influence of tranilast and doxorubicin on fibrosis, we probed the matrix using atomic force microscopy (AFM) and assessed matrix protein deposition. We further studied the combinatorial influence of the drugs on cancer cell proliferation and invasion.

Results

Our results demonstrated that the combinatorial action of tranilast and doxorubicin significantly diminished the stiffness of the stromal matrix compared to the control. The two drugs in synergy disrupted fibronectin assembly and reduced collagen fiber density. Furthermore, the combination of these drugs, condensed tumor growth and invasion.

Conclusion

In this work, we utilized a 3D microengineered model to tease apart the role of tranilast and doxorubicin in the sole presence of CAFs on desmoplasia, tumor growth and invasion. Our study lay down a ground work on better understanding of the role of biomechanical properties of the matrix on anti-cancer drug efficacy in the presence of single class of stromal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

2D:

Two dimensional

3D:

Three dimensional

AFM:

Atomic force microscopy

APTES:

2-Aminopropyl-3 triethoxy silane

CAFs:

Cancer associated fibroblasts

DAPI:

4′,6-Diamidino-2-phenylindole, dihydrochloride

DMSO:

Dimethyl sulfoxide

ECM:

Extracellular matrix

EDU:

5-Ethynyl-2′-deoxyuridine

FAK:

Focal adhesion kinase signaling

GA:

Glutaraldehyde

PDL:

Poly d-lysine

PDMS:

Poly dimethoxy siloxane

References

  1. Abu, N., M. N. Akhtar, W. Y. Ho, S. K. Yeap, and N. B. Alitheen. 3-Bromo-1-hydroxy-9,10-anthraquinone (BHAQ) inhibits growth and migration of the human breast cancer cell lines MCF-7 and MDA-MB231. Molecules 18(9):10367–10377, 2013.

    Article  Google Scholar 

  2. Branton, M. H., and J. B. Kopp. TGF-β and fibrosis. Microb. Infect. 1(15):1349–1365, 1999.

    Article  Google Scholar 

  3. Butt, H. J., and M. Jaschke. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1):1, 1995.

    Article  Google Scholar 

  4. Chuang, T. D., and O. Khorram. Tranilast inhibits genes functionally involved in cell proliferation, fibrosis, and epigenetic regulation and epigenetically induces miR-29c expression in leiomyoma cells. Reprod. Sci. 24(9):1253–1263, 2017.

    Article  Google Scholar 

  5. Darakhshan, S., A. Bidmeshkipour, M. Khazaei, A. Rabzia, and A. Ghanbari. Synergistic effects of tamoxifen and tranilast on VEGF and MMP-9 regulation in cultured human breast cancer cells. Asian Pac. J. Cancer Prev. 14(11):6869–6874, 2013.

    Article  Google Scholar 

  6. Darakhshan, S., and A. Ghanbari. Tranilast enhances the anti-tumor effects of tamoxifen on human breast cancer cells in vitro. J. Biomed. Sci. 20(1):76, 2013.

    Article  Google Scholar 

  7. Darakhshan, S., and A. B. Pour. Tranilast: a review of its therapeutic applications. Pharmacol. Res. 91:15–28, 2015.

    Article  Google Scholar 

  8. Dumont, N., B. Liu, R. A. DeFilippis, H. Chang, J. T. Rabban, A. N. Karnezis, J. A. Tjoe, J. Marx, B. Parvin, and T. D. Tlsty. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15(3):249-IN7, 2013.

    Article  Google Scholar 

  9. Fang, M., J. Yuan, C. Peng, and Y. Li. Collagen as a double-edged sword in tumor progression. Tumour Biol. 35(4):2871–2882, 2014.

    Article  Google Scholar 

  10. Farmer, P., H. Bonnefoi, P. Anderle, D. Cameron, P. Wirapati, V. Becette, S. Andre, M. Piccart, M. Campone, E. Brain, G. Macgrogan, T. Petit, J. Jassem, F. Bibeau, E. Blot, J. Bogaerts, M. Aguet, J. Bergh, R. Iggo, and M. Delorenzi. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat. Med. 15(1):68–74, 2009.

    Article  Google Scholar 

  11. Gjorevski, N., A. S. Piotrowski, V. D. Varner, and C. M. Nelson. Dynamic tensile forces drive collective cell migration through three-dimensional extracellular matrices. Sci. Rep. 5:11458, 2015.

    Article  Google Scholar 

  12. Han, W., S. Chen, W. Yuan, Q. Fan, J. Tian, X. Wang, L. Chen, X. Zhang, W. Wei, R. Liu, J. Qu, Y. Jiao, R. H. Austin, and L. Liu. Oriented collagen fibers direct tumor cell intravasation. Proc. Natl. Acad. Sci. USA 113(40):11208–11213, 2016.

    Article  Google Scholar 

  13. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144(5):646–674, 2011.

    Article  Google Scholar 

  14. Harigai, R., S. Sakai, H. Nobusue, C. Hirose, O. Sampetrean, N. Minami, Y. Hata, T. Kasama, T. Hirose, T. Takenouchi, K. Kosaki, K. Kishi, H. Saya, and Y. Arima. Tranilast inhibits the expression of genes related to epithelial-mesenchymal transition and angiogenesis in neurofibromin-deficient cells. Sci. Rep. 8(1):6069, 2018.

    Article  Google Scholar 

  15. Hirata, E., M. R. Girotti, A. Viros, S. Hooper, B. Spencer-Dene, M. Matsuda, J. Larkin, R. Marais, and E. Sahai. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27(4):574–588, 2015.

    Article  Google Scholar 

  16. Hutter, J. L., and J. Bechhoefer. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64(7):1868–1873, 1993.

    Article  Google Scholar 

  17. Izumi, K., A. Mizokami, Y. Q. Li, K. Narimoto, K. Sugimoto, Y. Kadono, Y. Kitagawa, H. Konaka, E. Koh, E. T. Keller, and M. Namiki. Tranilast inhibits hormone refractory prostate cancer cell proliferation and suppresses transforming growth factor beta1-associated osteoblastic changes. Prostate 69(11):1222–1234, 2009.

    Article  Google Scholar 

  18. Jeong, S. Y., J. H. Lee, Y. Shin, S. Chung, and H. J. Kuh. Co-Culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS ONE 11(7):e0159013, 2016.

    Article  Google Scholar 

  19. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16(9):582–598, 2016.

    Article  Google Scholar 

  20. Katt, M. E., A. L. Placone, A. D. Wong, Z. S. Xu, and P. C. Searson. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 4:12, 2016.

    Article  Google Scholar 

  21. Kozono, S., K. Ohuchida, D. Eguchi, N. Ikenaga, K. Fujiwara, L. Cui, K. Mizumoto, and M. Tanaka. Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Res. 73(7):2345–2356, 2013.

    Article  Google Scholar 

  22. Lovitt, C. J., T. B. Shelper, and V. M. Avery. Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 18(1):41, 2018.

    Article  Google Scholar 

  23. Mak, I. W. Y., N. Evaniew, and M. Ghert. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6(2):114–118, 2014.

    Google Scholar 

  24. Mediavilla-Varela, M., K. Boateng, D. Noyes, and S. J. Antonia. The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts. BMC Cancer 16:176, 2016.

    Article  Google Scholar 

  25. Nagaraju, S., D. Truong, G. Mouneimne, and M. Nikkhah. Microfluidic tumor-vascular model to study breast cancer cell invasion and intravasation. Adv. Healthc. Mater. 7:1701257, 2018.

    Article  Google Scholar 

  26. NawrockiRaby, B., M. Polette, C. Gilles, C. Clavel, K. Strumane, M. Matos, J.-M. Zahm, F. Van Roy, N. Bonnet, and P. Birembaut. Quantitative cell dispersion analysis: new test to measure tumor cell aggressiveness. Int. J. Cancer 93(5):644–652, 2001.

    Article  Google Scholar 

  27. Nelson, C. M., J. L. Inman, and M. J. Bissell. Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat. Protoc. 3(4):674–678, 2008.

    Article  Google Scholar 

  28. Netti, P. A., D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60(9):2497–2503, 2000.

    Google Scholar 

  29. Ng, M. R., A. Besser, G. Danuser, and J. S. Brugge. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J. Cell Biol. 199(3):545–563, 2012.

    Article  Google Scholar 

  30. Nikkhah, M., J. S. Strobl, and M. Agah. Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries. Biomed. Microdevices 11(2):429, 2008.

    Article  Google Scholar 

  31. Nikkhah, M., J. S. Strobl, E. M. Schmelz, P. C. Roberts, H. Zhou, and M. Agah. MCF10A and MDA-MB-231 human breast basal epithelial cell co-culture in silicon micro-arrays. Biomaterials 32(30):7625–7632, 2011.

    Article  Google Scholar 

  32. Ohshio, Y., J. Hanaoka, K. Kontani, and K. Teramoto. Tranilast Inhibits the function of cancer-associated fibroblasts responsible for the induction of immune suppressor cell types. Scand. J. Immunol. 80(6):408–416, 2014.

    Article  Google Scholar 

  33. Okazaki, M., S. Fushida, S. Harada, T. Tsukada, J. Kinoshita, K. Oyama, H. Tajima, I. Ninomiya, T. Fujimura, and T. Ohta. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer Lett. 355(1):46–53, 2014.

    Article  Google Scholar 

  34. Onoue, S., Y. Kojo, Y. Aoki, Y. Kawabata, Y. Yamauchi, and S. Yamada. Physicochemical and pharmacokinetic characterization of amorphous solid dispersion of tranilast with enhanced solubility in gastric fluid and improved oral bioavailability. Drug Metab. Pharmacokinet. 27(4):379–387, 2012.

    Article  Google Scholar 

  35. Papageorgis, P., C. Polydorou, F. Mpekris, C. Voutouri, E. Agathokleous, C. P. Kapnissi-Christodoulou, and T. Stylianopoulos. Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner. Sci. Rep. 7:46140, 2017.

    Article  Google Scholar 

  36. Peela, N., E. S. Barrientos, D. Truong, G. Mouneimne, and M. Nikkhah. Effect of suberoylanilide hydroxamic acid (SAHA) on breast cancer cells within a tumor-stroma microfluidic model. Integr. Biol. 9(12):988–999, 2017.

    Article  Google Scholar 

  37. Peela, N., F. S. Sam, W. Christenson, D. Truong, A. W. Watson, G. Mouneimne, R. Ros, and M. Nikkhah. A three dimensional micropatterned tumor model for breast cancer cell migration studies. Biomaterials 81:72–83, 2016.

    Article  Google Scholar 

  38. Peela, N., D. Truong, H. Saini, H. Chu, S. Mashaghi, S. L. Ham, S. Singh, H. Tavana, B. Mosadegh, and M. Nikkhah. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. Biomaterials 133:176–207, 2017.

    Article  Google Scholar 

  39. Pilco-Ferreto, N., and G. M. Calaf. Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. Int. J. Oncol. 49(2):753–762, 2016.

    Article  Google Scholar 

  40. Place, A. E., S. Jin Huh, and K. Polyak. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 13(6):227, 2011.

    Article  Google Scholar 

  41. Plodinec, M., M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J. T. Hyotyla, U. Aebi, M. Bentires-Alj, R. Y. Lim, and C. A. Schoenenberger. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7(11):757–765, 2012.

    Article  Google Scholar 

  42. Polydorou, C., F. Mpekris, P. Papageorgis, C. Voutouri, and T. Stylianopoulos. Pirfenidone normalizes the tumor microenvironment to improve chemotherapy. Oncotarget 8(15):24506–24517, 2017.

    Article  Google Scholar 

  43. Rahman, N. A., L. S. Yazan, A. Wibowo, N. Ahmat, J. B. Foo, Y. S. Tor, S. K. Yeap, Z. A. Razali, Y. S. Ong, and S. Fakurazi. Induction of apoptosis and G2/M arrest by ampelopsin E from Dryobalanops towards triple negative breast cancer cells, MDA-MB-231. BMC Complement. Altern. Med. 16:354, 2016.

    Article  Google Scholar 

  44. Saito, H., S. Fushida, S. Harada, T. Miyashita, K. Oyama, T. Yamaguchi, T. Tsukada, J. Kinoshita, H. Tajima, I. Ninomiya, and T. Ohta. Importance of human peritoneal mesothelial cells in the progression, fibrosis, and control of gastric cancer: inhibition of growth and fibrosis by tranilast. Gastric Cancer 21(1):55–67, 2018.

    Article  Google Scholar 

  45. Sakai, S., C. Iwata, H. Y. Tanaka, H. Cabral, Y. Morishita, K. Miyazono, and M. R. Kano. Increased fibrosis and impaired intratumoral accumulation of macromolecules in a murine model of pancreatic cancer co-administered with FGF-2. J. Control Release 230:109–115, 2016.

    Article  Google Scholar 

  46. Sato, S., S. Takahashi, M. Asamoto, T. Naiki, A. Naiki-Ito, K. Asai, and T. Shirai. Tranilast suppresses prostate cancer growth and osteoclast differentiation in vivo and in vitro. Prostate 70(3):229–238, 2010.

    Google Scholar 

  47. Schrader, J., T. T. Gordon-Walker, R. L. Aucott, M. van Deemter, A. Quaas, S. Walsh, D. Benten, S. J. Forbes, R. G. Wells, and J. P. Iredale. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53(4):1192–1205, 2011.

    Article  Google Scholar 

  48. Seniutkin, O., S. Furuya, Y. S. Luo, J. A. Cichocki, H. Fukushima, Y. Kato, H. Sugimoto, T. Matsumoto, T. Uehara, and I. Rusyn. Effects of pirfenidone in acute and sub-chronic liver fibrosis, and an initiation-promotion cancer model in the mouse. Toxicol. Appl. Pharmacol. 339:1–9, 2018.

    Article  Google Scholar 

  49. Senthebane, D. A., A. Rowe, N. E. Thomford, H. Shipanga, D. Munro, M. Mazeedi, H. A. M. Almazyadi, K. Kallmeyer, C. Dandara, M. S. Pepper, M. I. Parker, and K. Dzobo. The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int. J. Mol. Sci. 18(7):1586, 2017.

    Article  Google Scholar 

  50. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2017. CA Cancer J. Clin. 67(1):7–30, 2017.

    Article  Google Scholar 

  51. Smith, L., M. B. Watson, S. L. O’Kane, P. J. Drew, M. J. Lind, and L. Cawkwell. The analysis of doxorubicin resistance in human breast cancer cells using antibody microarrays. Mol. Cancer Ther. 5(8):2115–2120, 2006.

    Article  Google Scholar 

  52. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93(12):4453–4461, 2007.

    Article  Google Scholar 

  53. Stanisavljevic, J., J. Loubat-Casanovas, M. Herrera, T. Luque, R. Pena, A. Lluch, J. Albanell, F. Bonilla, A. Rovira, C. Pena, D. Navajas, F. Rojo, A. G. de Herreros, and J. Baulida. Snail1-expressing fibroblasts in the tumor microenvironment display mechanical properties that support metastasis. Cancer Res. 75(2):284–295, 2015.

    Article  Google Scholar 

  54. Staunton, J. R., B. L. Doss, S. Lindsay, and R. Ros. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci. Rep. 6:19686, 2016.

    Article  Google Scholar 

  55. Strobl, J. S., M. Nikkhah, and M. Agah. Actions of the anti-cancer drug suberoylanilide hydroxamic acid (SAHA) on human breast cancer cytoarchitecture in silicon microstructures. Biomaterials 31(27):7043–7050, 2010.

    Article  Google Scholar 

  56. Subramaniam, V., O. Ace, G. J. Prud’homme, and S. Jothy. Tranilast treatment decreases cell growth, migration and inhibits colony formation of human breast cancer cells. Exp. Mol. Pathol. 90(1):116–122, 2011.

    Article  Google Scholar 

  57. Subramaniam, V., R. Chakrabarti, G. J. Prud’homme, and S. Jothy. Tranilast inhibits cell proliferation and migration and promotes apoptosis in murine breast cancer. Anti-Cancer Drugs 21(4):351–361, 2010.

    Article  Google Scholar 

  58. Suklabaidya, S., B. Das, S. A. Ali, S. Jain, S. Swaminathan, A. K. Mohanty, S. K. Panda, P. Dash, S. Chakraborty, S. K. Batra, and S. Senapati. Characterization and use of HapT1-derived homologous tumors as a preclinical model to evaluate therapeutic efficacy of drugs against pancreatic tumor desmoplasia. Oncotarget 7(27):41825–41842, 2016.

    Article  Google Scholar 

  59. Suzawa, H., S. Kikuchi, N. Arai, and A. Koda. The mechanism involved in the inhibitory action of tranilast on collagen biosynthesis of keloid fibroblasts. Jpn. J. Pharmacol. 60(2):91–96, 1992.

    Article  Google Scholar 

  60. Takai, K., A. Le, V. M. Weaver, and Z. Werb. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7(50):82889–82901, 2016.

    Article  Google Scholar 

  61. Tassone, P., P. Tagliaferri, A. Perricelli, S. Blotta, B. Quaresima, M. L. Martelli, A. Goel, V. Barbieri, F. Costanzo, C. R. Boland, and S. Venuta. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br. J. Cancer 88(8):1285–1291, 2003.

    Article  Google Scholar 

  62. Têtu, B., J. Brisson, C. S. Wang, H. Lapointe, G. Beaudry, C. Blanchette, and D. Trudel. The influence of MMP-14, TIMP-2 and MMP-2 expression on breast cancer prognosis. Breast Cancer Res. 8(3):R28, 2006.

    Article  Google Scholar 

  63. Tredan, O., C. M. Galmarini, K. Patel, and I. F. Tannock. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst. 99(19):1441–1454, 2007.

    Article  Google Scholar 

  64. Tripathi, M., S. Billet, and N. A. Bhowmick. Understanding the role of stromal fibroblasts in cancer progression. Cell Adhes. Migr. 6(3):231–235, 2012.

    Article  Google Scholar 

  65. Truong, D., J. Puleo, A. Llave, G. Mouneimne, R. D. Kamm, and M. Nikkhah. Breast cancer cell invasion into a three dimensional tumor-stroma microenvironment. Sci. Rep. 6:34094, 2016.

    Article  Google Scholar 

  66. Wang, W., Q. Li, T. Yamada, K. Matsumoto, I. Matsumoto, M. Oda, G. Watanabe, Y. Kayano, Y. Nishioka, S. Sone, and S. Yano. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin. Cancer Res. 15(21):6630–6638, 2009.

    Article  Google Scholar 

  67. Wu, A., K. Loutherback, G. Lambert, L. Estevez-Salmeron, T. D. Tlsty, R. H. Austin, and J. C. Sturm. Cell motility and drug gradients in the emergence of resistance to chemotherapy. Proc. Natl. Acad. Sci. USA 110(40):16103–16108, 2013.

    Article  Google Scholar 

  68. Zhang, B., T. Jiang, S. Shen, X. She, Y. Tuo, Y. Hu, Z. Pang, and X. Jiang. Cyclopamine disrupts tumor extracellular matrix and improves the distribution and efficacy of nanotherapeutics in pancreatic cancer. Biomaterials 103:12–21, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge National Science Foundation (NSF) Award # 1510700 and ASU Fulton undergraduate research initiative (FURI).

Conflict of interest

HS, KRE, CS, MA, GM, RR, MN declare no conflict of interest.

Ethical Approval

No human and animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Nikkhah.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Mehdi Nikkhah is currently an Assistant Professor of Biomedical Engineering at the School of Biological and Health Systems Engineering (SBHSE), Arizona State University. His laboratory research is focused on the integration of innovative biomaterial and micro-/nanoscale technologies to create biomimetic tissue constructs for disease modeling and regenerative medicine applications. Dr. Nikkhah completed his postdoctoral fellowship at Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology (HST), working in the areas of Biomaterials and regenerative medicine. He received his Ph.D. degree in Mechanical Engineering from Virginia Tech, where his research was focused on cell-biomaterial interface and identification of cancer cell biomechanical signatures using isotropic microstructures. Dr. Nikkhah has published more than 50 journal articles, 7 book chapters and 70 peer-reviewed conference papers (~ 3500 citations, H-index of 30), and holds numerous invention disclosures and patents. He has also received many prestigious awards and recognitions during his career some of which include: National Science Foundation (NSF) CAREER Award, Arizona New Investigator Award, Young Investigator Award from Polymeric Materials Science and Engineering division of American Chemical Society (ACS), National Institute of Health (NIH) Ruth L. Kirschstein National Research Service Awards (NRSA) for Individual Postdoctoral Fellows, and Outstanding Ph.D. Dissertation Award at Virginia Tech.

figure a

This article is part of the 2018 CMBE Young Innovators special issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12195_2018_544_MOESM1_ESM.tif

Supplementary material 1 (TIFF 21449 kb). Supplementary Figure 1: IC 50 values in 3D assay for MDA-MB-231 and CAFs in response to different concentrations of (A) Tranilast and (B) Doxorubicin in 3D assay. (C) IC 50 values of MDA-MB-231 and CAFs at higher concentration of doxorubicin.

12195_2018_544_MOESM2_ESM.tif

Supplementary material 2 (TIFF 14568 kb). Supplementary Figure 2: Representative immunofluorescent images demonstrating fibronectin deposition and assembly within 3D matrix across experimental groups. Arrows representing the fibronectin fibers. * represent the microwells molded in collagen. Scale bars represent 20 µm.

12195_2018_544_MOESM3_ESM.tif

Supplementary material 3 (TIFF 11664 kb). Supplementary Figure 3: Scatter dot plot of data replicates for elastic modulus measurement showing variation of stiffness across all groups on day 1 and day 3 of the culture.

12195_2018_544_MOESM4_ESM.tif

Supplementary material 4 (TIFF 34388 kb). Supplementary Figure 4: (A) Representative immunofluorescent images of EdU assay depicting proliferation of MCF7 and MCF10A in control and Tranilast+Doxorubcin treated group. (B) Quantification of proliferation of MCF7 and MCF10A cells across culture conditions. Scale bars represents 50 µm. (* represents p value < 0.05).

12195_2018_544_MOESM5_ESM.tif

Supplementary material 5 (TIFF 50639 kb). Supplementary Figure 5: (A) Representative phase contrast and fluorescent images of tumor cell dispersion in DMSO, tranilast and doxorubicin conditions on day 1 and day 3. (B) Representative triangulation graphs depicting tumor cell invasion into the stroma within DMSO, tranilast and doxorubicin group. (C) Quantification of area disorder of MDA-MB-231 cells across all the groups. Scale bars represent 100 µm. (* represents p value < 0.05).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, H., Rahmani Eliato, K., Silva, C. et al. The Role of Desmoplasia and Stromal Fibroblasts on Anti-cancer Drug Resistance in a Microengineered Tumor Model. Cel. Mol. Bioeng. 11, 419–433 (2018). https://doi.org/10.1007/s12195-018-0544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-018-0544-9

Keywords

Navigation