Advertisement

Cellular and Molecular Bioengineering

, Volume 11, Issue 4, pp 241–253 | Cite as

Novel Lipid Signaling Mediators for Mesenchymal Stem Cell Mobilization During Bone Repair

  • Jada M. Selma
  • Anusuya Das
  • Anthony O. Awojoodu
  • Tiffany Wang
  • Anjan P. Kaushik
  • Quanjun Cui
  • Hannah Song
  • Molly E. Ogle
  • Claire E. Olingy
  • Emily G. Pendleton
  • Kayvan F. Tehrani
  • Luke J. Mortensen
  • Edward A. Botchwey
Article

Abstract

Introduction

Mesenchymal stem and progenitor cells (MSCs), which normally reside in the bone marrow, are critical to bone health and can be recruited to sites of traumatic bone injury, contributing to new bone formation. The ability to control the trafficking of MSCs provides therapeutic potential for improving traumatic bone healing and therapy for genetic bone diseases such as hypophosphatasia.

Methods

In this study, we explored the sphingosine-1-phosphate (S1P) signaling axis as a means to control the mobilization of MSCs into blood and possibly to recruit MSCs for enhancing bone growth.

Results

Loss of S1P receptor 3 (S1PR3) leads to an increase in circulating CD45−/CD29+/CD90+/Sca1+ putative mesenchymal progenitor cells, suggesting that blocking S1PR3 may stimulate MSCs to leave the bone marrow. Antagonism of S1PR3 with the small molecule VPC01091 stimulated acute migration of CD45−/CD29+/CD90+/Sca1+ MSCs into the blood as early as 1.5 h after treatment. VPC01091 administration also increased ectopic bone formation induced by BMP-2 and significantly increased new bone formation in critically sized rat cranial defects, suggesting that mobilized MSCs may home to injuries to contribute to healing. We also explored the possibility of combining S1P manipulation of endogenous host cell occupancy with exogenous MSC transplantation for potential use in combination therapies. Importantly, reducing niche occupancy of host MSCs with VPC01091 does not impede engraftment of exogenous MSCs.

Conclusions

Our studies suggest that MSC mobilization through S1PR3 antagonism is a promising strategy for endogenous tissue engineering and improving MSC delivery to treat bone diseases.

Keywords

Sphingolipids VPC01091 Sphingosine 1-phosphate Bone loss 

Abbreviations

MSC

Mesenchymal stem cell

BM

Bone marrow

S1P

Sphingosine 1-phosphate

S1PR

Sphingosine 1-phosphate receptor

PB

Peripheral blood

EPCs

Endothelial progenitor cells

CXCR4

Chemokine receptor 4

IP

Intraperitoneal

HSPC

Hematopoietic stem and progenitor cell

Sca1

Stem cell antigen-1

LSK

Lineage-Sca1+ C-kit+

Notes

Acknowledgments

We would like to thank Kevin Lynch (University of Virginia) for providing VPC01091, Richard Proia (NIH) for providing the S1PR3-/- mice, and the core facilities staff of the Parker H. Petit Institute for Bioengineering and Bioscience for their technical expertise. This work was supported by NIH Grants R01AR056445, and R01DE019935 and Department of Defense grant W81XWH-10-1-0928 awarded to Dr. Botchwey. Our study was also in part supported by the Regenerative Engineering and Medicine Center’s “Georgia Partners in Regenerative Medicine” seed grant and the Marcus Center for Therapeutic Cell Characterization and Manufacturing (MC3 M) research grant awarded to Dr. Botchwey and Dr. Mortensen; the Soft Bones Foundation Maher Family Research Grant to Dr. Mortensen; as well as the National Science Foundation grant NSF GRFP DGE-1148903, the NIH/NIGMS Cell and Tissue Engineering Biotechnology training grant T32GM008433, and the Alfred P. Sloan gradate fellowship awarded to Jada Selma.

Funding

This study was funded by NIH (Grants# R01AR056445, R01DE019935), Department of Defense (Grant # W81XWH-10-1-0928), Regenerative Engineering and Medicine Center’s “Georgia Partners in Regenerative Medicine” Seed Grant, the Marcus Center for Therapeutic Cell Characterization and Manufacturing Grant, the Soft Bones Foundation Maher Family Research Grant, NSF (Grant# GRFP DGE-1148903), NIH/NIGMS (Grant# T32GM008433) and Alfred P. Sloan Foundation.

Conflict of interest

Ms. Selma declares that she has no conflict of interest. Ms. Wang declares that she has no conflict of interest. Ms. Pendleton declares that she has no conflict of interest. Dr. Botchwey declares that he has no conflict of interest. Dr. Cui has received grants from DOD, NIH, and grants from Exactech (outside the submitted work). Dr. Cui also reports that he is an editorial board member for the Journal of Arthroplasty, Editor-in-Chief for the World Journal of Orthopaedics, and receives royalties from Elsevier. Dr. Das declares that she has no conflict of interest. Dr. Kaushik declares that he has no conflict of interest. Dr. Tehrani declares that he has no conflict of interest. Dr. Mortensen declares that he has no conflict of interest. Dr. Awojoodu declares that he has no conflict of interest. Dr. Song declares that she has no conflict of interest. Dr. Ogle declares that she has no conflict of interest. Dr. Olingy declares that she has no conflict of interest.

Disclosure

No competing financial interests exist.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

12195_2018_532_MOESM1_ESM.tif (48 mb)
Supplementary material 1 (TIFF 49160 kb). Supplemental Fig. 1. Flow cytometry gating for MSCs and LSK cells and S1P receptor expression for MSCs. MSCs are identified in the blood by gating for (A) cells, (B) live cells (C) CD45-/Sca1+cells and finally (D) CD90+/CD29+ cells. (E) Sca1+/CD105+ cells isolated from wild type mice express relatively more S1PR3 compared to whole bone marrow cells. (F) S1PR3-/- mice have more Sca1+/CD105+ cells in circulation (n = 2 mice per group). LSK cells are identified in the blood by gating for (G) cells, (H) single cells, (I) Lineage- cells and (J) Sca1+/C-kit+ cells. Data expressed as mean ± SEM. Abbreviations: WT, wild type; WBM, whole bone marrow
12195_2018_532_MOESM2_ESM.tif (5.1 mb)
Supplementary material 2 (TIFF 5178 kb). Supplemental Fig. 2. More MSC-like cells migrate to ectopic bone site with systemic VPC01091. Percentage of CD29+/CD90+ cells surrounding ectopic bone site increases with systemic VPC01091 treatment at 1 week (A) and (B) 3 weeks after matrigel + BMP-2 implantation (n = 3 mice per group). Data expressed as mean ± SEM. * p < 0.05. Abbreviations: VPC, VPC01091; mpk, milligram per kilogram
12195_2018_532_MOESM3_ESM.tif (20.7 mb)
Supplementary material 3 (TIFF 21236 kb). Supplemental Fig. 3. Increase in osteoid body formation and fibroblast-like cell migration to defect site with systemic VPC01091. Representative images of Masson’s trichrome staining of calvarial bone after 8 weeks of saline (A) or 1 mg/kg VPC01091 treatment (C) showing osteoid bodies (red) within the bone (blue). Magnified sections (squared off segments in A, C) of Masson’s trichrome staining of calvarial bone after 8 weeks of saline (B) or 1 mg/kg VPC01091 treatment (D). (E) 3 weeks after treatment, there is an increase in the percentage of CD90+ and CD11b-/CD90+ cells in the defect region (n = 3 mice per group). Data expressed as mean ± SEM. * p < 0.05

References

  1. 1.
    Adler, B. K., D. E. Salzman, M. H. Carabasi, W. P. Vaughan, V. V. Reddy, and J. T. Prchal. Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood. 97:3313–3314, 2001.CrossRefGoogle Scholar
  2. 2.
    Amini, A. R., C. T. Laurencin, and S. P. Nukavarapu. Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40:363–408, 2012.CrossRefGoogle Scholar
  3. 3.
    Aronin, C. E. P., L. S. Sefcik, S. S. Tholpady, A. Tholpady, K. W. Sadik, T. L. Macdonald, and E. A. Botchwey. FTY720 promotes local microvascular network formation and regeneration of cranial bone defects. Tissue Eng. Part A 16(6):1801–1809, 2010.CrossRefGoogle Scholar
  4. 4.
    Ateschrang, A., B. G. Ochs, M. Ludemann, K. Weise, and D. Albrecht. Fibula and tibia fusion with cancellous allograft vitalised with autologous bone marrow: first results for infected tibial non-union. Arch. Orthop. Trauma Surg. 129:97–104, 2009.CrossRefGoogle Scholar
  5. 5.
    Awojoodu, A. O., M. E. Ogle, L. S. Sefcik, D. T. Bowers, K. Martin, K. L. Brayman, K. R. Lynch, S. M. Peirce-Cottler, and E. Botchwey. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl. Acad. Sci. USA. 110:13785–13790, 2013.CrossRefGoogle Scholar
  6. 6.
    Cui, Q., and E. A. Botchwey. Emerging ideas: treatment of precollapse osteonecrosis using stem cells and growth factors. Clin. Orthop. Relat. Res. 469:2665–2669, 2011.CrossRefGoogle Scholar
  7. 7.
    Das, A., C. E. Segar, Y. Chu, T. W. Wang, Y. Lin, C. Yang, X. Du, R. C. Ogle, Q. Cui, and E. A. Botchwey. Bioactive lipid coating of bone allografts directs engraftment and fate determination of bone marrow-derived cells in rat GFP chimeras. Biomaterials. 64:98–107, 2015.CrossRefGoogle Scholar
  8. 8.
    Das, A., C. E. Segar, B. B. Hughley, D. T. Bowers, and E. A. Botchwey. The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials. 34:9853–9862, 2013.CrossRefGoogle Scholar
  9. 9.
    Das, A., S. Tanner, D. A. Barker, D. Green, and E. A. Botchwey. Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect. J. Biomed. Mater. Res. A. 102:1210–1218, 2014.CrossRefGoogle Scholar
  10. 10.
    Deng, J., Z. M. Zou, T. L. Zhou, Y. P. Su, G. P. Ai, J. P. Wang, H. Xu, and S. W. Dong. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol. Sci. 32:641–651, 2011.CrossRefGoogle Scholar
  11. 11.
    Fernandez-Bances, I., M. Perez-Basterrechea, S. Perez-Lopez, D. N. Batalla, M. A. F. Rodriguez, M. Alvarez-Viejo, and J. P. Aparicio. Repair of long-bone pseudoarthrosis with autologous bone marrow mononuclear cells combined with allogenic bone graft. Cytotherapy. 15(5):571–577, 2013.CrossRefGoogle Scholar
  12. 12.
    Fu, Q., N. N. Tang, Q. Zhang, Y. Liu, J. C. Peng, N. Fang, L. M. Yu, J. W. Liu, and T. Zhang. Preclinical study of cell therapy for osteonecrosis of the femoral head with allogenic peripheral blood-derived mesenchymal stem cells. Yonsei Med. J. 57:1006–1015, 2016.CrossRefGoogle Scholar
  13. 13.
    Galipeau, J. The mesenchymal stromal cells dilemma–does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 15:2–8, 2013.CrossRefGoogle Scholar
  14. 14.
    Giannoudis, P. V., H. Dinopoulos, and E. Tsiridis. Bone substitutes: an update. Injury. 36(Suppl 3):S20–27, 2005.CrossRefGoogle Scholar
  15. 15.
    Golan, K., Y. Vagima, A. Ludin, T. Itkin, S. Cohen-Gur, A. Kalinkovich, O. Kollet, C. Kim, A. Schajnovitz, Y. Ovadya, K. Lapid, S. Shivtiel, A. J. Morris, M. Z. Ratajczak, and T. Lapidot. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood. 119:2478–2488, 2012.CrossRefGoogle Scholar
  16. 16.
    Granero-Molto, F., J. A. Weis, M. I. Miga, B. Landis, T. J. Myers, L. O’Rear, L. Longobardi, E. D. Jansen, D. P. Mortlock, and A. Spagnoli. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 27:1887–1898, 2009.CrossRefGoogle Scholar
  17. 17.
    Grayson, W. L., B. A. Bunnell, E. Martin, T. Frazier, B. P. Hung, and J. M. Gimble. Stromal cells and stem cells in clinical bone regeneration. Nat. Rev. Endocrinol. 11:140–150, 2015.CrossRefGoogle Scholar
  18. 18.
    Grigg, A. P. Granulocyte colony-stimulating factor-induced sickle cell crisis and multiorgan dysfunction in a patient with compound heterozygous sickle cell/beta + thalassemia. Blood. 97:3998–3999, 2001.CrossRefGoogle Scholar
  19. 19.
    Hannoush, E. J., I. Elhassan, Z. C. Sifri, A. A. Mohr, W. D. Alzate, and D. H. Livingston. Role of bone marrow and mesenchymal stem cells in healing after traumatic injury. Surgery. 153:44–51, 2013.CrossRefGoogle Scholar
  20. 20.
    Holmes, C., and W. L. Stanford. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells. 25:1339–1347, 2007.CrossRefGoogle Scholar
  21. 21.
    Hoogduijn, M. J., M. M. Verstegen, A. U. Engela, S. S. Korevaar, M. Roemeling-van Rhijn, A. Merino, and M. G. Betjes. No evidence for circulating mesenchymal stem cells in patients with organ injury. Stem Cells Dev. 23(19):2328–2335, 2014.CrossRefGoogle Scholar
  22. 22.
    Horwitz, E. M., D. J. Prockop, L. A. Fitzpatrick, W. W. Koo, P. L. Gordon, M. Neel, M. Sussman, P. Orchard, J. C. Marx, R. E. Pyeritz, and M. K. Brenner. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5:309–313, 1999.CrossRefGoogle Scholar
  23. 23.
    Hou, R., F. Chen, Y. Yang, X. Cheng, Z. Gao, H. O. Yang, W. Wu, and T. Mao. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J. Biomed. Mater. Res. A. 80:85–93, 2007.CrossRefGoogle Scholar
  24. 24.
    Hou, R., T. Mao, Y. Yang, Z. Gao, X. Cheng, S. Chen, and F. Chen. Experimental study on repair of critical-sized cranial defect by tissue engineered bone. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 19:818–821, 2005.Google Scholar
  25. 25.
    Hu, C., X. Yong, C. Li, M. Lu, D. Liu, L. Chen, J. Hu, M. Teng, D. Zhang, Y. Fan, and G. Liang. CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J. Surg. Res. 183:427–434, 2013.CrossRefGoogle Scholar
  26. 26.
    Huang, C., A. Das, D. Barker, S. Tholpady, T. Wang, Q. Cui, R. Ogle, and E. Botchwey. Local delivery of FTY720 accelerates cranial allograft incorporation and bone formation. Cell Tissue Res. 347:553–566, 2012.CrossRefGoogle Scholar
  27. 27.
    Ishii, M., J. G. Egen, F. Klauschen, M. Meier-Schellersheim, Y. Saeki, J. Vacher, R. L. Proia, and R. N. Germain. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature. 458:524–528, 2009.CrossRefGoogle Scholar
  28. 28.
    Ishii, M., J. Kikuta, Y. Shimazu, M. Meier-Schellersheim, and R. N. Germain. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J. Exp. Med. 207:2793–2798, 2010.CrossRefGoogle Scholar
  29. 29.
    Juarez, J. G., N. Harun, M. Thien, R. Welschinger, R. Baraz, A. D. Pena, S. M. Pitson, M. Rettig, J. F. DiPersio, K. F. Bradstock, and L. J. Bendall. Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood. 119:707–716, 2012.CrossRefGoogle Scholar
  30. 30.
    Kassis, I., L. Zangi, R. Rivkin, L. Levdansky, S. Samuel, G. Marx, and R. Gorodetsky. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant. 37:967–976, 2006.CrossRefGoogle Scholar
  31. 31.
    Kim, C. H., W. Wu, M. Wysoczynski, A. Abdel-Latif, M. Sunkara, A. Morris, M. Kucia, J. Ratajczak, and M. Z. Ratajczak. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia. 26:106–116, 2012.CrossRefGoogle Scholar
  32. 32.
    Kimura, T., A. M. Boehmler, G. Seitz, S. Kuci, T. Wiesner, V. Brinkmann, L. Kanz, and R. Mohle. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34 + progenitor cells. Blood. 103:4478–4486, 2004.CrossRefGoogle Scholar
  33. 33.
    Kitaori, T., H. Ito, E. M. Schwarz, R. Tsutsumi, H. Yoshitomi, S. Oishi, M. Nakano, N. Fujii, T. Nagasawa, and T. Nakamura. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60:813–823, 2009.CrossRefGoogle Scholar
  34. 34.
    Klinker, M. W., R. A. Marklein, J. L. Lo, C. H. Surdo, C. H. Wei, and S. R. Bauer. Morphological features of IFN-gamma-stimulated mesenchymal stromal cells predict overall immunosuppressive capacity. Proc. Natl. Acad. Sci. USA. 114:E2598–E2607, 2017.CrossRefGoogle Scholar
  35. 35.
    Kong, Z., D. Tian, H. Yu, W. Feng, and C. Liu. Treatment of traumatic bone defect with graft material of allogenic cancellous combined with autologous red marrow. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 22:1251–1254, 2008.Google Scholar
  36. 36.
    Kong, Y., H. Wang, T. Lin, and S. Wang. Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells. Mediators Inflamm. 2014:565369, 2014.CrossRefGoogle Scholar
  37. 37.
    Kumar, S., and S. Ponnazhagan. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone. 50:1012–1018, 2012.CrossRefGoogle Scholar
  38. 38.
    Lee, O. H., Y. M. Kim, Y. M. Lee, E. J. Moon, D. J. Lee, J. H. Kim, K. W. Kim, and Y. G. Kwon. Sphingosine 1-phosphate induces angiogenesis: its angiogenic action and signaling mechanism in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 264:743–750, 1999.CrossRefGoogle Scholar
  39. 39.
    Lee, M. J., S. Thangada, J. H. Paik, G. P. Sapkota, N. Ancellin, S. S. Chae, M. Wu, M. Morales-Ruiz, W. C. Sessa, D. R. Alessi, and T. Hla. Akt-mediated phosphorylation of the G protein-coupled receptor EDG-1 is required for endothelial cell chemotaxis. Mol. Cell. 8:693–704, 2001.CrossRefGoogle Scholar
  40. 40.
    Levesque, J. P., I. G. Winkler, S. R. Larsen, and J. E. Rasko. Mobilization of bone marrow-derived progenitors. Handb. Exp. Pharmacol. 180:3–36, 2007.CrossRefGoogle Scholar
  41. 41.
    Liao, J., X. Chen, Y. Li, Z. Ge, H. Duan, Y. Zou, and J. Ge. Transfer of bone-marrow-derived mesenchymal stem cells influences vascular remodeling and calcification after balloon injury in hyperlipidemic rats. J. Biomed. Biotechnol. 2012:165296, 2012.Google Scholar
  42. 42.
    Marklein, R. A., J. L. Lo, I. H. Surdo, S. A. Bellayr, R. K. Godil, S. Puri, and S. R. Bauer. High content imaging of early morphological signatures predicts long term mineralization capacity of human mesenchymal stem cells upon osteogenic induction. Stem Cells. 34:935–947, 2016.CrossRefGoogle Scholar
  43. 43.
    Mathieu, M., S. Rigutto, A. Ingels, D. Spruyt, N. Stricwant, I. Kharroubi, V. Albarani, M. Jayankura, J. Rasschaert, E. Bastianelli, and V. Gangji. Decreased pool of mesenchymal stem cells is associated with altered chemokines serum levels in atrophic nonunion fractures. Bone. 53:391–398, 2013.CrossRefGoogle Scholar
  44. 44.
    Matsumoto, T., A. Kawamoto, R. Kuroda, M. Ishikawa, Y. Mifune, H. Iwasaki, M. Miwa, M. Horii, S. Hayashi, A. Oyamada, H. Nishimura, S. Murasawa, M. Doita, M. Kurosaka, and T. Asahara. Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am. J. Pathol. 169:1440–1457, 2006.CrossRefGoogle Scholar
  45. 45.
    Meriane, M., S. Duhamel, L. Lejeune, J. Galipeau, and B. Annabi. Cooperation of matrix metalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase signaling pathways is required for the sphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells. Stem Cells. 24:2557–2565, 2006.CrossRefGoogle Scholar
  46. 46.
    Mortensen, L. J., C. Alt, R. Turcotte, M. Masek, T. M. Liu, D. C. Cote, C. Xu, G. Intini, and C. P. Lin. Femtosecond laser bone ablation with a high repetition rate fiber laser source. Biomed. Opt. Express. 6:32–42, 2015.CrossRefGoogle Scholar
  47. 47.
    Ogle, M. E., C. E. Olingy, A. O. Awojoodu, A. Das, R. A. Ortiz, H. Y. Cheung, and E. A. Botchwey. Sphingosine-1-phosphate receptor-3 supports hematopoietic stem and progenitor cell residence within the bone marrow Niche. Stem Cells. 35:1040–1052, 2017.CrossRefGoogle Scholar
  48. 48.
    Otsuru, S., K. Tamai, T. Yamazaki, H. Yoshikawa, and Y. Kaneda. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells. 26:223–234, 2008.CrossRefGoogle Scholar
  49. 49.
    Pereira, R. F., M. D. O’Hara, A. V. Laptev, K. W. Halford, M. D. Pollard, R. Class, D. Simon, K. Livezey, and D. J. Prockop. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc. Natl. Acad. Sci. USA. 95:1142–1147, 1998.CrossRefGoogle Scholar
  50. 50.
    Petrie, C., S. Tholpady, R. Ogle, and E. Botchwey. Proliferative capacity and osteogenic potential of novel dura mater stem cells on poly-lactic-co-glycolic acid. J. Biomed. Mater. Res. A. 85:61–71, 2008.CrossRefGoogle Scholar
  51. 51.
    Phillips, J. A., L. J. Mortensen, J. P. Ruiz, R. Sridharan, S. Kumar, M. Torres, P. Sharma, C. P. Lin, J. M. Karp, and P. V. Hauschka. Advances in single-cell tracking of mesenchymal stem cells (MSCs) during musculoskeletal regeneration. Orthop. J. Harv. Med. Sch. 14:22–28, 2012.Google Scholar
  52. 52.
    Phinney, D. G. Isolation of mesenchymal stem cells from murine bone marrow by immunodepletion. Methods Mol. Biol. 449:171–186, 2008.Google Scholar
  53. 53.
    Pologruto, T. A., B. L. Sabatini, and K. Svoboda. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online. 2:13, 2003.CrossRefGoogle Scholar
  54. 54.
    Ratajczak, M. Z., H. Lee, M. Wysoczynski, W. Wan, W. Marlicz, M. J. Laughlin, M. Kucia, A. Janowska-Wieczorek, and J. Ratajczak. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia. 24:976–985, 2010.CrossRefGoogle Scholar
  55. 55.
    Ratajczak, M. Z., M. Suszynska, S. Borkowska, J. Ratajczak, and G. Schneider. The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opin. Therap. Targ. 18:95–107, 2014.CrossRefGoogle Scholar
  56. 56.
    Rivera, J., R. L. Proia, and A. Olivera. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8:753–763, 2008.CrossRefGoogle Scholar
  57. 57.
    Rosenkilde, M. M., L. O. Gerlach, J. S. Jakobsen, R. T. Skerlj, G. J. Bridger, and T. W. Schwartz. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J. Biol. Chem. 279:3033–3041, 2004.CrossRefGoogle Scholar
  58. 58.
    Scott, M. A., B. Levi, A. Askarinam, A. Nguyen, T. Rackohn, K. Ting, C. Soo, and A. W. James. Brief review of models of ectopic bone formation. Stem Cells Dev. 21:655–667, 2012.CrossRefGoogle Scholar
  59. 59.
    Sefcik, L. S., C. E. Aronin, A. O. Awojoodu, S. J. Shin, F. Mac, F. Gabhann, T. L. MacDonald, B. R. Wamhoff, K. R. Lynch, S. M. Peirce, and E. A. Botchwey. Selective activation of sphingosine 1-phosphate receptors 1 and 3 promotes local microvascular network growth. Tissue Eng. Part A. 17:617–629, 2011.CrossRefGoogle Scholar
  60. 60.
    Sefcik, L. S., C. E. Petrie, K. A. Wieghaus, and E. A. Botchwey. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials. 29:2869–2877, 2008.CrossRefGoogle Scholar
  61. 61.
    Shirley, D., D. Marsh, G. Jordan, S. McQuaid, and G. Li. Systemic recruitment of osteoblastic cells in fracture healing. J. Orthop. Res. 23:1013–1021, 2005.CrossRefGoogle Scholar
  62. 62.
    Stephan, S. J., S. S. Tholpady, B. Gross, C. E. Petrie-Aronin, E. A. Botchway, L. S. Nair, R. C. Ogle, and S. S. Park. Injectable tissue-engineered bone repair of a rat calvarial defect. Laryngoscope. 120:895–901, 2010.Google Scholar
  63. 63.
    Tadokoro, M., R. Kanai, T. Taketani, Y. Uchio, S. Yamaguchi, and H. Ohgushi. New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J. Pediatr. 154:924–930, 2009.CrossRefGoogle Scholar
  64. 64.
    Taketani, T., C. Oyama, A. Mihara, Y. Tanabe, M. Abe, T. Hirade, S. Yamamoto, R. Bo, R. Kanai, T. Tadenuma, Y. Michibata, S. Yamamoto, M. Hattori, Y. Katsube, H. Ohnishi, M. Sasao, Y. Oda, K. Hattori, S. Yuba, H. Ohgushi, and S. Yamaguchi. Ex vivo expanded allogeneic mesenchymal stem cells with bone marrow transplantation improved osteogenesis in infants with severe hypophosphatasia. Cell Transplant. 24:1931–1943, 2015.CrossRefGoogle Scholar
  65. 65.
    Tehrani, K. F., P. Kner, and L. J. Mortensen. Characterization of wavefront errors in mouse cranial bone using second-harmonic generation. J. Biomed. Opt. 22:36012, 2017.CrossRefGoogle Scholar
  66. 66.
    Tehrani, K. F., P. Kner, and L. J. Mortensen. Modeling of Optical Aberrations Caused by Light Propagation in Mouse Cranial Bone Using Second Harmonic Generation Imaging. San Fransciso: SPIE BiOS, 2017.Google Scholar
  67. 67.
    To, L. B., J. P. Levesque, and K. E. Herbert. How I treat patients who mobilize hematopoietic stem cells poorly. Blood. 118:4530–4540, 2011.CrossRefGoogle Scholar
  68. 68.
    Toupadakis, C. A., J. L. Granick, M. Sagy, A. Wong, E. Ghassemi, D. J. Chung, D. L. Borjesson, and C. E. Yellowley. Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model. Cytotherapy. 15:1136–1147, 2013.CrossRefGoogle Scholar
  69. 69.
    Walter, D. H., U. Rochwalsky, J. Reinhold, F. Seeger, A. Aicher, C. Urbich, I. Spyridopoulos, J. Chun, V. Brinkmann, P. Keul, B. Levkau, A. M. Zeiher, S. Dimmeler, and J. Haendeler. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler. Thromb. Vasc. Biol. 27:275–282, 2007.CrossRefGoogle Scholar
  70. 70.
    Wang, X. X., R. J. Allen, Jr, J. P. Tutela, A. Sailon, A. C. Allori, E. H. Davidson, G. K. Paek, P. B. Saadeh, J. G. McCarthy, and S. M. Warren. Progenitor cell mobilization enhances bone healing by means of improved neovascularization and osteogenesis. Plast. Reconstr. Surg. 128:395–405, 2011.CrossRefGoogle Scholar
  71. 71.
    Wu, G., M. Pan, X. Wang, J. Wen, S. Cao, Z. Li, Y. Li, C. Qian, Z. Liu, W. Wu, L. Zhu, and J. Guo. Osteogenesis of peripheral blood mesenchymal stem cells in self assembling peptide nanofiber for healing critical size calvarial bony defect. Sci. Rep. 5:16681, 2015.CrossRefGoogle Scholar
  72. 72.
    Zhu, R., A. H. Snyder, Y. Kharel, L. Schaffter, Q. Sun, P. C. Kennedy, K. R. Lynch, and T. L. Macdonald. Asymmetric synthesis of conformationally constrained fingolimod analogues—discovery of an orally active sphingosine 1-phosphate receptor type-1 agonist and receptor type-3 antagonist. J. Med. Chem. 50:6428–6435, 2007.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Jada M. Selma
    • 1
    • 2
  • Anusuya Das
    • 3
  • Anthony O. Awojoodu
    • 1
    • 2
  • Tiffany Wang
    • 1
    • 2
  • Anjan P. Kaushik
    • 4
  • Quanjun Cui
    • 4
  • Hannah Song
    • 1
    • 2
  • Molly E. Ogle
    • 1
    • 2
  • Claire E. Olingy
    • 1
    • 2
  • Emily G. Pendleton
    • 5
  • Kayvan F. Tehrani
    • 5
  • Luke J. Mortensen
    • 5
    • 6
  • Edward A. Botchwey
    • 1
    • 2
  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.Parker H. Petit Institute for Bioengineering and BiosciencesGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of Orthopedic SurgeryUniversity of VirginiaCharlottesvilleUSA
  5. 5.Regenerative Bioscience Center, Rhodes Center for ADSUniversity of GeorgiaAthensUSA
  6. 6.School of Chemical, Materials and Biomedical EngineeringUniversity of GeorgiaAthensUSA

Personalised recommendations